

# Practical Course: Vision-based Navigation WS 2018/2019

### Lecture 3. Keypoints

Vladyslav Usenko, Nikolaus Demmel, Prof. Dr. Daniel Cremers

### What We Will Cover Today

- Keypoint detection
  - Corner detection
  - Blob detection
  - Scale selection
- Keypoint description
  - Scale-Invariant Feature Transform (SIFT)
- State-of-the-art detectors and descriptors
- Keypoint matching
- RANSAC

### **Recap: Keypoint Detection**

- Desirable properties of keypoint detectors for visual odometry:
  - high repeatability,
  - localization accuracy,
  - robustness,
  - invariance,
  - computational efficiency



**Harris Corners** 

Image source: Svetlana Lazebnik



DoG (SIFT) Blobs

## **Recap: Keypoint Matching**



- Desirable properties for VO:
  - High recall
  - Precision
  - Robustness
  - Computational efficiency
- One possible approach to keypoint matching: by descriptor

### **Recap: Local Feature Descriptors**

- Desirable properties for VO: distinctiveness, robustness, invariance
- Extract signatures that describe local image regions, examples:
  - Histograms over image gradients (SIFT)
  - Histograms over Haar-wavelet responses (SURF)
  - Binary patterns (BRIEF, BRISK, FREAK, etc.)
  - Learning-based descriptors (f.e. Calonder et al., ECCV 2008)
- Rotation-invariance: Align with dominant orientation in local region
- Scale-invariance: Adapt described region extent to keypoint scale



SIFT gradient pooling



**BRIEF** test locations

# **Image Matching**



NASA Mars Rover images

# **Image Matching**



NASA Mars Rover images with SIFT feature matches

### **Invariant Local Features**

#### Find features that are invariant to transformations

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...



**Feature Descriptors** 

### **Advantages of Local Features**

#### Locality

features are local, so robust to occlusion and clutter

#### **Distinctiveness:**

can differentiate a large database of objects

#### Quantity

hundreds or thousands in a single image

#### Efficiency

real-time performance achievable

# **Local Measures of Uniqueness**

Suppose we only consider a small window of pixels

What defines whether a feature is well localized and unique?







# **Local Measure of Uniqueness**

 How does the window change when you shift by a small amount?







"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

# **Locally Unique Features (Corners)**

#### Define

E(u,v) = amount of change when you shift the window by (u,v)



E(u,v) is small for all shifts



E(u,v) is small for some shifts



E(u,v) is small for no shifts

We want  $\min_{(u,v)} E(u,v)$  to be?

### **Corner Detection**

#### Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by Sum of the Squared Differences (SSD)
- this defines an SSD "error" E(u,v):



$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

Sum of Squared Differences (SSD)

# **Small Motion Assumption**

Taylor Series expansion of I:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

If the motion (u,v) is small, then first order approx is good

$$I(x+u,y+v) \approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

$$pprox I(x,y) + [I_x \ I_y] \left[ egin{array}{c} u \\ v \end{array} \right]$$

shorthand: 
$$I_x = \frac{\partial I}{\partial x}$$

Plugging this into the formula on the previous slide...

### **Corner Detection**

#### Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences
- this defines an "error" of E(u,v):



$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^{2}$$

### **Corner Detection**

#### Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences
- this defines an "error" of E(u,v):



$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum_{(x,y)\in W} [I(x,y) + [I_{x} I_{y}] \begin{bmatrix} u \\ v \end{bmatrix} - I(x,y)]^{2}$$

 $pprox \qquad \sum \qquad \left| [I_x \ I_y] \ \right| \ \frac{u}{v} \ \left| \ \right|^2$ 

### **Structure Tensor**

#### This can be rewritten:

$$E(u,v) = \sum_{(x,y)\in W} [u\ v] \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

#### For the example above

- You can move the center of the green window to anywhere on the blue unit circle
- Which directions will result in the largest and smallest E values?
- We can find these directions by looking at the eigenvectors of H

### **Structure Tensor**

#### This can be rewritten:

$$E(u,v) = \begin{bmatrix} u & v \end{bmatrix} \left( \sum_{(x,y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

$$H \quad \text{"structure tensor"}$$

#### Eigenvalues and eigenvectors of H

- Define shifts with the smallest and largest change (E value)
- $x_{+}$  = direction of largest increase in E.
- $\lambda_{+}$  = amount of increase in direction  $x_{+}$
- x<sub>-</sub> = direction of smallest increase in E.
- $\lambda$  = amount of increase in direction x

$$Hx_{+} = \lambda_{+}x_{+}$$

$$Hx_{-} = \lambda_{-}x_{-}$$

### **Corner Detection**

#### Define

E(u,v) = amount of change when you shift the window by (u,v)



E(u,v) is small for all shifts



E(u,v) is small for some shifts



E(u,v) is small for no shifts

We want  $\min_{(u,v)} E(u,v)$  to be large: maximize  $\lambda_-$ 

### **Corner Detection Recipe**

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ<sub>-</sub> > threshold)
- Choose those points where  $\lambda_{\underline{}}$  is a local maximum as features



 $\lambda_{\pm}$ 

 $\lambda_{-}$ 

### **Corner Detection Recipe**

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ<sub>-</sub> > threshold)
- Choose those points where  $\lambda_{\underline{\cdot}}$  is a local maximum as features





### **Harris Operator**

•  $\lambda_{\text{L}}$  is a variant of the "Harris operator" for corner detection

$$f = \frac{\lambda - \lambda_{+}}{\lambda_{-} + \lambda_{+}}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The trace is the sum of the diagonals, i.e., trace(H) =  $h_{11} + h_{22}$
- Very similar to  $\lambda_{-}$  but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

# **Harris Operator**



# **Harris Detector Example**



# **Harris Corner Response**



# **Thresholded Harris Corner Response**



# **Local Maxima of Harris Corner Response**



# **Harris Corners**



# **Keypoint Descriptors**

- We know how to detect good points
- Next question: How to match them?



 Idea: extract distinctive descriptor vector from a local patch around the keypoint

### **Invariance**

- Goal: match keypoints regardless of image transformation
  - This is called transformational invariance
- Most keypoint detection and description methods are designed to be invariant to
  - Translation, 2D rotation, scale
- They can usually also handle
  - Limited 3D rotations (SIFT works up to about 60 degrees)
  - Limited affine transformations (some are fully affine invariant)
  - Limited illumination/contrast changes



### **Invariant Detection and Description**

- Make sure your detector is invariant
  - Harris is invariant to translation and rotation
  - Scale is trickier
    - Scale selection for blobs (f.e. SIFT)
    - Keypoints at multiple scales for same location
- Design an invariant feature descriptor
  - A descriptor captures the information in a region around the detected feature point
  - The simplest descriptor: a square window of pixels
    - What's this invariant to?
  - Let's look at some better approaches...

### **2D Rotation Invariance**

- Idea: align the descriptor with a dominant 2D orientation
- Example approach: Use the eigenvector of H corresponding to larger eigenvalue



Figure by Matthew Brown

### Scale Invariant Feature Transform (SIFT)

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations
- Select two strongest orientations and create two descriptors



### **SIFT Descriptor**

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells \* 8 orientations = 128 dimensional descriptor



### **Properties of SIFT**

- Can handle changes in viewpoint
  - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
  - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
  - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Kno wn\_implementations\_of\_SIFT
- But: false positive matches



### **SURF**

- Speeded Up Robust Features
- Approximates LoG and descriptor calculation in SIFT using Haar wavelets
  - Faster computation
  - Similar performance like SIFT



### **FAST Detector**

- Features from Accelerated Segment Test
- Check relation of brightness values to center pixel along circle
- Specific number of contiguous pixels brighter or darker than center



Very fast corner detection

Rosten, Drummond, Fusing Points and Lines for High Performance Tracking, ICCV 2005

## **BRIEF Descriptor**

- Binary Robust Independent Elementary Features
- Binary descriptor from intensity comparisons at sample positions
- Very efficient to compute
- Fast matching distance through Hamming distance



Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV'10

### **ORB Descriptor**

- Oriented Fast and Rotated BRIEF
  - Combination of FAST detector and BRIEF descriptor
  - Rotation-invariant BRIEF:
     Estimate dominant orientation
     from patch moments
- Very popular for VO





Rublee, Rabaud, Konolige, Bradski, ORB: an efficient alternative to SIFT or SURF, ICCV 2011

# **Keypoint Matching**



Match keypoints with similar descriptors

# **Matching Distance**

- How to define the difference between two descriptors f1, f2?
- Simple approach is to assign keypoints with minimal sum of square differences SSD(f1, f2) between entries of the two descriptors





<sup>1</sup>1

## **Matching Distance**

- Better approach:
   best to second best ratio distance = SSD(f1, f2) / SSD(f1, f2')
  - f2 is best SSD match to f1 in I2
  - f2' is 2nd best SSD match to f1 in I2





۱<sub>1</sub>

# **Eliminating Bad Matches**



- Only accept matches with distance smaller a threshold
- How to choose the threshold?

# **True/False Positives**



- Choice of threshold affects performance
  - Too restrictive: less false positives (#false matches) but also less true positives (#true matches)
  - Too lax: more true positives but also more false positives
- Can we do more?

## Random Sample Consensus (RANSAC)

- Model fitting in presence of noise and outliers
- Example: fitting a line through 2D points



Least-squares solution, assuming constant noise for all points



We only need 2 points to fit a line. Let's try 2 random points



Let's try 2 other random points



Let's try yet another 2 random points



 Let's use the inliers of the best trial so far to perform least squares fitting



# **RANSAC Algorithm**

- RANdom SAmple Consensus algorithm formalizes this idea
- Algorithm:

Input: data D, s required #data points for fitting, success probability p, outlier ratio  $\epsilon$ 

Output: inlier set

- 1. Compute required number of iterations  $N = \frac{\log(1-p)}{\log(1-(1-\epsilon)^s)}$
- **2.** For N iterations do:
  - 1. Randomly select a subset of s data points
  - 2. Fit model on the subset
  - 3. Count inliers and keep model/subset with largest number of inliers
- 3. Refit model using found inlier set

 $N \ \ {\rm for} \ \ p=0.99$ 

|                  | Required points | Outlier ratio $\epsilon$ |     |     |     |      |      |       |
|------------------|-----------------|--------------------------|-----|-----|-----|------|------|-------|
|                  | S               | 10%                      | 20% | 30% | 40% | 50%  | 60%  | 70%   |
| Line             | 2               | 3                        | 5   | 7   | 11  | 17   | 27   | 49    |
| Plane            | 3               | 4                        | 7   | 11  | 19  | 35   | 70   | 169   |
| Essential matrix | 8               | 9                        | 26  | 78  | 272 | 1177 | 7025 | 70188 |

### **Lessons Learned Today**

- Keypoint detection, description and matching is a well researched topic
- Highly performant corner and blob detectors exist
- Corners are optimized for localization accuracy
- Blobs have a natural notion of scale through the scale-normalized LoG
- ORB is currently most popular detector/descriptor combination for visual motion estimation
- Keypoint matching by descriptor distance
- Robust matching based on model fitting using RANSAC

# Recap: 2D-to-2D Motion Estimation

Given corresponding image point observations

$$\mathcal{Y}_t = \{\mathbf{y}_{t,1}, \dots, \mathbf{y}_{t,N}\}$$
  $\mathcal{Y}_{t-1} = \{\mathbf{y}_{t-1,1}, \dots, \mathbf{y}_{t-1,N}\}$  of unknown 3D points  $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  (expressed in camera frame at time t) determine relative motion  $\mathbf{T}_t^{t-1}$  between frames

Naive try: minimize reprojection error using least squares

$$E(\mathbf{T}_{t}^{t-1}, \mathcal{X}) = \sum_{i=1}^{N} \left\| \bar{\mathbf{y}}_{t,i} - \pi \left( \bar{\mathbf{x}}_{i} \right) \right\|_{2}^{2} + \left\| \bar{\mathbf{y}}_{t-1,i} - \pi \left( \mathbf{T}_{t}^{t-1} \bar{\mathbf{x}}_{i} \right) \right\|_{2}^{2}$$

- Convexity? Uniqueness (scale-ambiguity)?
- Alternative algebraic approach

## **Recap: Eight-Point Algorithm**

- First proposed by Longuet and Higgins, Nature 1981
- Algorithm:
  - 1. Rewrite epipolar constraints as a linear system of equations

$$\widetilde{\mathbf{y}}_i^{\top} \mathbf{E} \widetilde{\mathbf{y}}_i' = \mathbf{a}_i \mathbf{E}_s = 0 \longrightarrow \mathbf{A} \mathbf{E}_s = \mathbf{0} \qquad \mathbf{A} = \left(\mathbf{a}_1^{\top}, \dots, \mathbf{a}_N^{\top}\right)^{\top}$$
 using Kronecker product  $\mathbf{a}_i = \widetilde{\mathbf{y}}_i \otimes \widetilde{\mathbf{y}}_i'$  and  $\mathbf{E}_s = \left(e_{11}, e_{12}, e_{13}, \dots, e_{33}\right)^{\top}$ 

- 2. Apply singular value decomposition (SVD) on  ${\bf A}={\bf U_AS_AV_A^\top}$  and unstack the 9th column of  ${\bf V_A}$  into  $\widetilde{\bf E}$
- 3. Project the approximate  $\widetilde{\mathbf{E}}$  into the (normalized) essential space: Determine the SVD of  $\widetilde{\mathbf{E}} = \mathbf{U} \operatorname{diag}\left(\sigma_1, \sigma_2, \sigma_3\right) \mathbf{V}^{\top}$  with  $\mathbf{U}, \mathbf{V} \in \mathbf{SO}(3)$  and replace the singular values  $\sigma_1 \geq \sigma_2 \geq \sigma_3$  with 1, 1, 0 to find  $\mathbf{E} = \mathbf{U} \operatorname{diag}(1, 1, 0) \mathbf{V}^{\top}$

# Recap: Error Metric of the Eight-Point Algorithm

- What is the physical meaning of the error minimized by the eight-point algorithm?
- The eight-point algorithm finds E that minimizes

$$\operatorname{argmin}_{\mathbf{E}_s} \|\mathbf{A}\mathbf{E}_s\|_2^2$$

subject to  $\|\mathbf{E}_s\|_2^2 = 1$  through the SVD on A

- We find a least squares fit to the epipolar constraints
- A violated epipolar constraint

$$\widetilde{\mathbf{y}}^{\top} (\mathbf{t} \times \mathbf{R} \widetilde{\mathbf{y}}') = 0$$

quantifies the volume spanned by y, t, and Ry'

No clear interpretation in terms of distance or angular error

## **Algorithm: 2D-to-2D Visual Odometry**

**Input:** image sequence  $I_{0:t}$  , camera calibration

**Output:** aggregated camera poses  $\mathbf{T}_{0:t}$ 

### Algorithm:

For each current image  $I_k$ :

- 1. Extract and match keypoints between  $I_{k-1}$  and  $I_k$
- 2. Compute relative pose  $\mathbf{T}_k^{k-1}$  from essential matrix between  $I_k$ ,  $I_{k-1}$
- 3. Fine-tune pose estimate by minimizing reprojection error
- 4. Compute relative scale and rescale translation of  $\mathbf{T}_k^{k-1}$
- 5. Aggregate camera pose by  $T_k = T_{k-1}T_k^{k-1}$

### 2D-to-3D Motion Estimation

• Given a local set of 3D points  $\mathcal{X}=\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$  and corresponding image observations

$$\mathcal{Y}_t = \{\mathbf{y}_{t,1}, \dots, \mathbf{y}_{t,N}\}$$

determine camera pose  $\mathbf{T}_t$  within the local map



Minimize least squares geometric reprojection error

$$E(\mathbf{T}_t) = \sum_{i=1}^{N} \left\| \mathbf{y}_{t,i} - \pi(\mathbf{T}_t^{-1} \mathbf{x}_i) \right\|_2^2$$

- A.k.a. Perspective-n-Points (PnP) problem, many approaches exist, f.e.
  - Direct linear transform (DLT)
  - EPnP (Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 2009)
  - OPnP (Zheng et al., Revisiting the PnP Problem: A Fast, General and Optimal Solution, ICCV 2013)

### **Direct Linear Transform for PnP**

- Goal: determine projection matrix  $\mathbf{P}=(\mathbf{R}\ \mathbf{t})\in\mathbb{R}^{3\times 4}=\left(egin{array}{c} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \mathbf{P}_3 \end{array}\right)$
- Each 2D-to-3D point correspondence 3D:  $\widetilde{\mathbf{x}}_i = (x_i, y_i, z_i, w_i)^{\top} \in \mathbb{P}^3$  2D:  $\widetilde{\mathbf{y}}_i = (x_i', y_i', w_i')^{\top} \in \mathbb{P}^2$  gives two constraints

$$\begin{pmatrix} \mathbf{0} & -w_i'\widetilde{\mathbf{x}}_i^\top & y_i'\widetilde{\mathbf{x}}_i^\top \\ w_i'\widetilde{\mathbf{x}}_i^\top & \mathbf{0} & -x_i'\widetilde{\mathbf{x}}_i^\top \end{pmatrix} \begin{pmatrix} \mathbf{P}_1^\top \\ \mathbf{P}_2^\top \\ \mathbf{P}_3^\top \end{pmatrix} = \mathbf{0}$$

through  $\widetilde{\mathbf{y}}_i \times (\mathbf{P}\widetilde{\mathbf{x}}_i) = 0$ 

- Form linear system of equations  $\mathbf{Ap}=\mathbf{0}$  with  $\mathbf{p}:=\begin{pmatrix} \mathbf{P}_1^\top\\\mathbf{P}_2^\top\\\mathbf{P}_3^\top \end{pmatrix}\in\mathbb{R}^9$  from  $N\geq 6$  correspondences
- Solve for  ${\bf p}$ : determine unit singular vector of  ${\bf A}$  corresponding to its smallest singular value

## **Algorithm: 2D-to-3D Visual Odometry**

**Input:** image sequence  $I_{0:t}$  , camera calibration

Output: aggregated camera poses  $\mathbf{T}_{0:t}$ 

### Algorithm:

### Initialize:

- 1. Extract and match keypoints between  $I_0$  and  $I_1$
- 2. Determine camera pose (essential matrix) and triangulate 3D keypoints  $X_1$

### For each current image $I_k$ :

- 1. Extract and match keypoints between  $I_{k-1}$  and  $I_k$
- 2. Compute camera pose  $T_k$  using PnP from 2D-to-3D matches
- 3. Triangulate all new keypoint matches between  $I_{k-1}$  and  $I_k$  and add them to the local map  $X_k$

### **3D-to-3D Motion Estimation**

 Given corresponding 3D points in two camera frames

$$\mathcal{X}_{t-1} = \{\mathbf{x}_{t-1,1}, \dots, \mathbf{x}_{t-1,N}\}$$
  $\mathcal{X}_t = \{\mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,N}\}$  determine relative camera pose  $\mathbf{T}_t^{t-1}$ 



- Idea: determine rigid transformation that aligns the 3D points
- Geometric least squares error:  $E\left(\mathbf{T}_{t}^{t-1}\right) = \sum_{i=1}^{N} \left\|\overline{\mathbf{x}}_{t-1,i} \mathbf{T}_{t}^{t-1}\overline{\mathbf{x}}_{t,i}\right\|_{2}^{2}$
- Closed-form solutions available, f.e. Arun et al., 1987
- Applicable f.e. for calibrated stereo cameras (triangulation of 3D points) or RGB-D cameras (measured depth)

# 3D Rigid-Body Motion from 3D-to-3D Matches

- Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 1987
- Corresponding 3D points,  $N \geq 3$

$$\mathcal{X}_{t-1} = \{\mathbf{x}_{t-1,1}, \dots, \mathbf{x}_{t-1,N}\}$$

$$\mathcal{X}_t = \{\mathbf{x}_{t,1}, \dots, \mathbf{x}_{t,N}\}$$

Determine means of 3D point sets

$$\boldsymbol{\mu}_{t-1} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t-1,i}$$

$$\boldsymbol{\mu}_t = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t,i}$$

Determine rotation from

$$\mathbf{A} = \sum_{i=1}^{N} \left( \mathbf{x}_{t-1} - \boldsymbol{\mu}_{t-1} 
ight) \left( \mathbf{x}_{t} - \boldsymbol{\mu}_{t} 
ight)^{ op} \qquad \mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^{ op} \qquad \mathbf{R}_{t-1}^{t} = \mathbf{V} \mathbf{U}^{ op}$$

• Determine translation as  $\mathbf{t}_{t-1}^t = oldsymbol{\mu}_t - \mathbf{R}_{t-1}^t oldsymbol{\mu}_{t-1}$ 

### Algorithm: Stereo 3D-to-3D Visual Odometry

**Input:** stereo image sequence  $I_{0:t}^l, I_{0:t}^r$ , camera calibration (including known pose between stereo cameras)

**Output:** aggregated camera poses  $\mathbf{T}_{0:t}$ 

### Algorithm:

For each current stereo image  $I_k^l$ ,  $I_k^r$ :

- 1. Extract and match keypoints between  $I_k^l$  and  $I_{k-1}^l$
- **2**. Triangulate 3D points  $X_k$  between  $I_k^l$  and  $I_k^r$
- 3. Compute camera pose  $T_k^{k-1}$  from 3D-to-3D point matches  $X_k$  to  $X_{k-1}$
- 4. Aggregate camera pose by  $T_k = T_{k-1}T_k^{k-1}$

### **Motion Estimation from Point Correspondences**

#### 2D-to-2D

• Reproj. error:  $E\left(\mathbf{T}_{t}^{t-1}, X\right) = \sum_{i=1}^{N} \left\| \overline{\mathbf{y}}_{t,i} - \pi\left(\overline{\mathbf{x}}_{i}\right) \right\|_{2}^{2} + \left\| \overline{\mathbf{y}}_{t-1,i} - \pi\left(\mathbf{T}_{t}^{t-1}\overline{\mathbf{x}}_{i}\right) \right\|_{2}^{2}$ 



• Linear algorithm: 8-point

### 2D-to-3D

- Reprojection error:  $E(\mathbf{T}_t) = \sum_{i=1}^{N} \|\mathbf{y}_{t,i} \pi(\mathbf{T}_t \mathbf{\bar{x}}_i)\|_2^2$
- Linear algorithm: DLT PnP



#### 3D-to-3D

- Reprojection error:  $E\left(\mathbf{T}_{t}^{t-1}\right) = \sum_{i=1}^{N}\left\|\overline{\mathbf{x}}_{t-1,i} \mathbf{T}_{t}^{t-1}\overline{\mathbf{x}}_{t,i}\right\|_{2}^{2}$
- Linear algorithm: Arun's method



