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What We Will Cover Today
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• Keypoint detection

• Corner detection

• Blob detection

• Scale selection

• Keypoint description

• Scale-Invariant Feature Transform (SIFT)

• State-of-the-art detectors and descriptors

• Keypoint matching

• RANSAC



Recap: Keypoint Detection
• Desirable properties of keypoint detectors for visual odometry:

• high repeatability, 

• localization accuracy, 

• robustness, 

• invariance, 

• computational efficiency

Robotic 3D Vision

Image source: Svetlana Lazebnik

Harris Corners DoG (SIFT) Blobs
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Recap: Keypoint Matching

• Desirable properties for VO:

• High recall

• Precision

• Robustness

• Computational efficiency

• One possible approach to keypoint matching: by descriptor
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Recap: Local Feature Descriptors
• Desirable properties for VO: distinctiveness, robustness, invariance

• Extract signatures that describe local image regions, examples:

• Histograms over image gradients (SIFT)

• Histograms over Haar-wavelet responses (SURF)

• Binary patterns (BRIEF, BRISK, FREAK, etc.)

• Learning-based descriptors (f.e. Calonder et al., ECCV 2008)

• Rotation-invariance: Align with dominant orientation in local region

• Scale-invariance: Adapt described region extent to keypoint scale

Robotic 3D Vision

SIFT gradient pooling BRIEF test locations

Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM5



Image Matching

NASA Mars Rover images
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Slide adapted from Steve Seitz



NASA Mars Rover images

with SIFT feature matches

Figure by Noah Snavely

Image Matching
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Slide adapted from Steve Seitz

Vladyslav S. Usenko




Invariant Local Features
Find features that are invariant to transformations

• geometric invariance:  translation, rotation, scale

• photometric invariance:  brightness, exposure, …

Feature Descriptors
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Slide adapted from Steve Seitz



Advantages of Local Features
Locality 

• features are local, so robust to occlusion and clutter

Distinctiveness: 

• can differentiate a large database of objects

Quantity

• hundreds or thousands in a single image

Efficiency

• real-time performance achievable
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Local Measures of Uniqueness
Suppose we only consider a small window of pixels

• What defines whether a feature is well localized and unique?
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Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute



Local Measure of Uniqueness

“flat” region:

no change in all 

directions

“edge”:  

no change along the 

edge direction

“corner”:

significant change in 

all directions

• How does the window change when you shift by a small 

amount?
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Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute



We want                          to be?

Locally Unique Features (Corners)
Define

E(u,v) = amount of change when you shift the window by (u,v)

E(u,v) is small
for all shifts

E(u,v) is small
for some shifts

E(u,v) is small 
for no shifts
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Slide adapted from Steve Seitz



Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by

Sum of the Squared Differences (SSD)

• this defines an SSD “error” E(u,v):

Corner Detection

W

Sum of Squared Differences (SSD)
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Slide adapted from Steve Seitz



Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx is good

Plugging this into the formula on the previous slide…

Small Motion Assumption
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Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by

summing up the squared differences

• this defines an “error” of E(u,v):

Corner Detection

W
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Corner Detection
Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by

summing up the squared differences

• this defines an “error” of E(u,v):

W
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Slide adapted from Steve Seitz

Vladyslav S. Usenko




Structure Tensor
This can be rewritten:

For the example above
• You can move the center of the green window to anywhere on the blue 

unit circle

• Which directions will result in the largest and smallest E values?

• We can find these directions by looking at the eigenvectors of H
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Structure Tensor
This can be rewritten:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change (E value)

• x+ = direction of largest increase in E. 

• O+ = amount of increase in direction x+

• x- = direction of smallest increase in E. 

• O- = amount of increase in direction x-

x-

x+
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Slide adapted from Steve Seitz

„structure tensor“



We want                          to be large: maximize 

Corner Detection
Define

E(u,v) = amount of change when you shift the window by (u,v)

E(u,v) is small
for all shifts

E(u,v) is small
for some shifts

E(u,v) is small 
for no shifts
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Corner Detection Recipe
• Compute the gradient at each point in the image

• Create the H matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (O- > threshold)

• Choose those points where O- is a local maximum as features
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Corner Detection Recipe
• Compute the gradient at each point in the image

• Create the H matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (O- > threshold)

• Choose those points where O- is a local maximum as features
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Slide adapted from Steve Seitz



Harris Operator

• O- is a variant of the “Harris operator” for corner 
detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to O- but less expensive (no square root)

• Called the “Harris Corner Detector” or “Harris Operator”
• Lots of other detectors, this is one of the most popular
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Slide adapted from Steve Seitz



Harris Operator

Harris 
operator
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Harris Detector Example
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Slide adapted from Steve Seitz



Harris Corner Response

(red high, blue low) Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 25

Slide adapted from Steve Seitz



Thresholded Harris Corner Response
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Slide adapted from Steve Seitz



Local Maxima of Harris Corner Response
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Slide adapted from Steve Seitz



Harris Corners
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Slide adapted from Steve Seitz



Keypoint Descriptors
• We know how to detect good points

• Next question: How to match them?

• Idea: extract distinctive descriptor vector from a local patch 
around the keypoint

?
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Slide adapted from Steve Seitz



Invariance
• Goal: match keypoints regardless of image transformation

• This is called transformational invariance

• Most keypoint detection and description methods are 

designed to be invariant to 
• Translation, 2D rotation, scale

• They can usually also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)

• Limited affine transformations (some are fully affine invariant)

• Limited illumination/contrast changes

?
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Slide adapted from Steve Seitz



Invariant Detection and Description
• Make sure your detector is invariant

• Harris is invariant to translation and rotation

• Scale is trickier

• Scale selection for blobs (f.e. SIFT)

• Keypoints at multiple scales for same location

• Design an invariant feature descriptor

• A descriptor captures the information in a region around 

the detected feature point

• The simplest descriptor:  a square window of pixels 

• What’s this invariant to?

• Let’s look at some better approaches…
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Slide adapted from Steve Seitz



2D Rotation Invariance
• Idea: align the descriptor with a dominant 2D orientation

• Example approach: Use the eigenvector of H corresponding to 

larger eigenvalue 

Figure by Matthew Brown
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Slide adapted from Steve Seitz



Scale Invariant Feature Transform (SIFT)
• Take 16x16 square window around detected feature

• Compute edge orientation (angle of the gradient) for each pixel

• Throw out weak edges (threshold gradient magnitude)

• Create histogram of surviving edge orientations

• Select two strongest orientations and create two descriptors 

0 2π
angle histogram
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Slide adapted from David Lowe



SIFT Descriptor

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case 

shown below)

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128 dimensional descriptor
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Slide adapted from David Lowe



Properties of SIFT
• Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time

• Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Kno

wn_implementations_of_SIFT 

• But: false positive matches
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Slide adapted from Steve Seitz



SURF

• Speeded Up Robust Features

• Approximates LoG and 

descriptor calculation in SIFT 

using Haar wavelets
• Faster computation

• Similar performance like SIFT
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Bay, Tuytelaars, Van Gool, Speeded Up Robust Features, ECCV 2006



FAST Detector
• Features from 

Accelerated Segment Test

• Check relation of 

brightness values to 

center pixel along circle

• Specific number of 

contiguous pixels brighter 

or darker than center

• Very fast corner detection
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Rosten, Drummond, Fusing Points and Lines for High Performance Tracking, ICCV 2005



BRIEF Descriptor

• Binary Robust Independent 

Elementary Features 

• Binary descriptor from intensity

comparisons at sample 

positions

• Very efficient to compute

• Fast matching distance through

Hamming distance
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Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV’10



ORB Descriptor

• Oriented Fast and Rotated BRIEF

• Combination of FAST detector 

and BRIEF descriptor

• Rotation-invariant BRIEF: 

Estimate dominant orientation 

from patch moments

• Very popular for VO
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Rublee, Rabaud, Konolige, Bradski, ORB: an efficient alternative to SIFT or SURF, ICCV 2011 



Keypoint Matching

• Match keypoints with similar descriptors
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Matching Distance

I1 I2

f1 f2

• How to define the difference between two descriptors f1, f2?

• Simple approach is to assign keypoints with minimal sum of 

square differences SSD(f1, f2) between entries of the two 

descriptors
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Matching Distance

I1 I2

• Better approach: 

best to second best ratio distance = SSD(f1, f2) / SSD(f1, f2’)
• f2 is best SSD match to f1 in I2

• f2’  is  2nd best SSD match to f1 in I2

f1 f2f2
'
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• Only accept matches with distance smaller a threshold

• How to choose the threshold?

Eliminating Bad Matches
50

75

200

feature distance

false match

true match
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Slide adapted from Steve Seitz



True/False Positives
50

75

200

feature distance

false match

true match

• Choice of threshold affects performance

• Too restrictive: less false positives (#false matches) but also less

true positives (#true matches)

• Too lax: more true positives but also more false positives

• Can we do more?
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Random Sample Consensus (RANSAC)

• Model fitting in presence of noise and outliers

• Example: fitting a line through 2D points
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• Least-squares solution, assuming constant noise for all points

RANSAC

Robotic 3D Vision

Bad!
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• We only need 2 points to fit a line. Let’s try 2 random points

RANSAC

Robotic 3D Vision

Quite ok..

7 inliers

4 outliers
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• Let’s try 2 other random points

RANSAC

Robotic 3D Vision

Quite bad..

3 inliers

8 outliers
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• Let’s try yet another 2 random points

RANSAC

Robotic 3D Vision

Quite good!

9 inliers

2 outliers
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• Let’s use the inliers of the best trial so far to perform least 
squares fitting

RANSAC

Robotic 3D Vision

Even better!
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• RANdom SAmple Consensus algorithm formalizes this idea

• Algorithm:

Input: data    ,   required #data points for fitting, success probability    , 
outlier ratio

Output: inlier set

1. Compute required number of iterations

2. For      iterations do:

1. Randomly select a subset of     data points

2. Fit model on the subset

3. Count inliers and keep model/subset with largest number of inliers

3. Refit model using found inlier set

RANSAC Algorithm
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RANSAC

Robotic 3D Vision

Required points
Outlier ratio

10% 20% 30% 40% 50% 60% 70%

Line 2 3 5 7 11 17 27 49

Plane 3 4 7 11 19 35 70 169

Essential matrix 8 9 26 78 272 1177 7025 70188

for

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM63



Lessons Learned Today
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• Keypoint detection, description and matching is a well 

researched topic

• Highly performant corner and blob detectors exist

• Corners are optimized for localization accuracy

• Blobs have a natural notion of scale through the scale-normalized 

LoG

• ORB is currently most popular detector/descriptor combination 

for visual motion estimation

• Keypoint matching by descriptor distance

• Robust matching based on model fitting using RANSAC



Recap: 2D-to-2D Motion Estimation
• Given corresponding image point observations

of unknown 3D points
(expressed in camera frame at time t)
determine relative motion between frames

• Naive try: minimize reprojection error using least squares

• Convexity? Uniqueness (scale-ambiguity)? 

• Alternative algebraic approach
Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM12



Recap: Eight-Point Algorithm
• First proposed by Longuet and Higgins, Nature 1981
• Algorithm:

1. Rewrite epipolar constraints as a linear system of equations

using Kronecker product and

2. Apply singular value decomposition (SVD) on                             and 
unstack the 9th column of into

3. Project the approximate into the (normalized) essential space: 
Determine the SVD of with

and replace the singular values with to find
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Recap: Error Metric of the Eight-Point 
Algorithm

• What is the physical meaning of the error minimized by the
eight-point algorithm?

• The eight-point algorithm finds E that minimizes

subject to through the SVD on A
• We find a least squares fit to the epipolar constraints
• A violated epipolar constraint

quantifies the volume spanned by y, t, and Ry‘
• No clear interpretation in terms of distance or angular error
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Algorithm: 2D-to-2D Visual Odometry
Input: image sequence , camera calibration
Output: aggregated camera poses

Algorithm:
For each current image :
1. Extract and match keypoints between and
2. Compute relative pose from essential matrix

between , 
3. Fine-tune pose estimate by minimizing reprojection error
4. Compute relative scale and rescale translation of
5. Aggregate camera pose by
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2D-to-3D Motion Estimation
• Given a local set of 3D points

and corresponding image observations

determine camera pose
within the local map

• Minimize least squares geometric reprojection error

• A.k.a. Perspective-n-Points (PnP) problem, many approaches exist, f.e.
• Direct linear transform (DLT)
• EPnP (Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 

2009)
• OPnP (Zheng et al., Revisiting the PnP Problem: A Fast, General and

Optimal Solution, ICCV 2013)
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• Goal: determine projection matrix

• Each 2D-to-3D point correspondence
3D:                                                   2D:
gives two constraints

through

• Form linear system of equations with
from correspondences

• Solve for : determine unit singular vector of corresponding to its
smallest singular value

Direct Linear Transform for PnP
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Algorithm: 2D-to-3D Visual Odometry
Input: image sequence , camera calibration
Output: aggregated camera poses
Algorithm:
Initialize:
1. Extract and match keypoints between and
2. Determine camera pose (essential matrix) and

triangulate 3D keypoints
For each current image :
1. Extract and match keypoints between and 
2. Compute camera pose using PnP from 2D-to-3D matches
3. Triangulate all new keypoint matches between and

and add them to the local map
Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM21



3D-to-3D Motion Estimation
• Given corresponding 3D points

in two camera frames

determine relative camera pose

• Idea: determine rigid transformation that aligns the 3D points

• Geometric least squares error:

• Closed-form solutions available, f.e. Arun et al., 1987
• Applicable f.e. for calibrated stereo cameras (triangulation of 3D 

points) or RGB-D cameras (measured depth)
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3D Rigid-Body Motion from 3D-to-3D 
Matches

• Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 
1987

• Corresponding 3D points,

• Determine means of 3D point sets

• Determine rotation from

• Determine translation as
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Algorithm: Stereo 3D-to-3D Visual Odometry

Input: stereo image sequence , camera calibration
(including known pose between stereo cameras)
Output: aggregated camera poses
Algorithm:
For each current stereo image ,    :
1. Extract and match keypoints between and
2. Triangulate 3D points between and
3. Compute camera pose from 3D-to-3D 

point matches to
4. Aggregate camera pose by
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• 2D-to-2D
• Reproj. error:

• Linear algorithm: 8-point

• 2D-to-3D
• Reprojection error:

• Linear algorithm: DLT PnP

• 3D-to-3D
• Reprojection error:

• Linear algorithm: Arun‘s method

Motion Estimation from Point Correspondences
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Thanks for your attention!


