Practical Course: Vision-based Navigation WS 2018/2019

Lecture 4. SfM

Vladyslav Usenko, Nikolaus Demmel,

Prof. Dr. Daniel Cremers

What We Will Cover Today

- Introduction to Visual SLAM
- Formulation of the SLAM Problem
- Full SLAM Posterior
- Bundle Adjustment (BA)
- Structure of the SLAM/BA Problem

What is Visual SLAM?

- Visual simultaneous localization and mapping (VSLAM)...
- Tracks the pose of the camera in a map, and simultaneously
- Estimates the parameters of the environment map (f.e. reconstruct the 3D positions of interest points in a common coordinate frame)
- Loop-closure: Revisiting a place allows for drift compensation
- How to detect a loop closure?

Image credit: Clemente et al., RSS 2007

What is Visual SLAM?

- Visual simultaneous localization and mapping (VSLAM)...
- Tracks the pose of the camera in a map, and simultaneously
- Estimates the parameters of the environment map (f.e. reconstruct the 3D positions of interest points in a common coordinate frame)
- Loop-closure: Revisiting a place allows for drift compensation
- How to detect a loop closure?
- Global vs. local optimization methods
- Global: bundle adjustment, pose-graph optimization, etc.
- Local: incremental tracking-and-mapping approaches, visual odometry with local maps. Often designed for real-time.
- Hybrids: Real-time local SLAM + global optimization in a slower parallel process (f.e. LSD-SLAM)

VO vs. VSLAM

Structure from Motion

- Structure from Motion (SfM) denotes the joint estimation of
- Structure, i.e. 3D reconstruction, and
- Motion, i.e. 6-DoF camera poses, from a collection (i.e. unordered set) of images
- Typical approach: keypoint matching and bundle adjustment

Structure from Motion

Agarwal et al., Building Rome in a Day, ICCV 2009, „Dubrovnik" image set

VSLAM vs. SfM

Why is SLAM difficult?

- Chicken-or-egg problem
- Camera trajectory and map are unknown and need to be estimated from observations
- Accurate localization requires an accurate map
- Accurate mapping
 requires accurate localization

Why is SLAM difficult?

- Correspondences
between observations and the map are unknown
- Wrong correspondences can lead to divergence of trajectory/map estimates
- Important to model uncertainties of observations and estimates in a probabilistic formulation of the SLAM problem

Definition of Visual SLAM

- Visual SLAM is the process of simultaneously estimating the egomotion of an object and the environment map using only inputs from visual sensors on the object and control inputs
- Inputs: images at discrete time steps t,
- Monocular case: Set of images $I_{0: t}=\left\{I_{0}, \ldots, I_{t}\right\}$
- Stereo case: Left/right images $I_{0: t}^{l}=\left\{I_{0}^{l}, \ldots, I_{t}^{l}\right\} \quad I_{0: t}^{r}=\left\{I_{0}^{r}, \ldots, I_{t}^{r}\right\}$
- RGB-D case: Color/depth images $I_{0: t}=\left\{I_{0}, \ldots, I_{t}\right\} \quad Z_{0: t}=\left\{Z_{0}, \ldots, Z_{t}\right\}$
- Robotics: control inputs $U_{1: t}$
- Output:
- Camera pose estimates $\mathrm{T}_{t} \in \mathrm{SE}(\mathbf{3})$ in world reference frame. For convenience, we also write $\boldsymbol{\xi}_{t}=\boldsymbol{\xi}\left(\mathbf{T}_{t}\right)$
- Environment map M

Map Observations in Visual SLAM

- With Y_{t} we denote observations of the environment map in image I_{t}, f.e.
- Indirect point-based method: $Y_{t}=\left\{\mathbf{y}_{t, 1}, \ldots, \mathbf{y}_{t, N}\right\}$ (2D or 3D image points)
- Direct RGB-D method: $Y_{t}=\left\{I_{t}, Z_{t}\right\}$ (all image pixels)
- Involves data association to map elements $M=\left\{m_{1}, \ldots, m_{S}\right\}$
- We denote correspondences by $c_{t, i}=j, 1 \leq i \leq N, 1 \leq j \leq S$

Probabilistic Formulation of Visual SLAM

- SLAM posterior probability: $p\left(\boldsymbol{\xi}_{0: t}, M \mid Y_{0: t}, U_{1: t}\right)$
- Observation likelihood: $\quad p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, M\right)$
- State-transition probability: $p\left(\boldsymbol{\xi}_{t} \mid \boldsymbol{\xi}_{t-1}, U_{t}\right)$

SLAM Graph Optimization

- Joint optimization for poses and map elements from image observations of map elements
- Common map element observations induce constraints between the poses
- Map elements correlate with each others through the common poses that observe them

- No temporal sequence: Bundle Adjustment

Probabilistic Formulation

- SLAM posterior: $p\left(\boldsymbol{\xi}_{0: t}, M \mid Y_{0: t}, U_{1: t}, c_{0: t}\right)$
- Observation likelihood:

$$
\begin{aligned}
& p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, M, c_{t}\right)=p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, m_{c_{t}}\right) \\
& p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, m_{c_{t}}\right)=\prod_{i} p\left(\mathbf{y}_{t, i} \mid \boldsymbol{\xi}_{t}, m_{c_{t, i}}\right)
\end{aligned}
$$

- State-transition probability:
$p\left(\boldsymbol{\xi}_{t} \mid \boldsymbol{\xi}_{t-1}, U_{t}\right)$
- SLAM posterior can be factorized:

$p\left(\boldsymbol{\xi}_{0: t}, M \mid Y_{0: t}, U_{1: t}, c_{0: t}\right)=\eta p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, m_{c_{t}}\right) p\left(\boldsymbol{\xi}_{0: t}, M \mid Y_{0: t-1}, U_{1: t}, c_{0: t-1}\right)$

$$
\begin{aligned}
& =\eta p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, m_{c_{t}}\right) p\left(\boldsymbol{\xi}_{t} \mid \boldsymbol{\xi}_{t-1}, U_{t}\right) p\left(\boldsymbol{\xi}_{0: t-1}, M \mid Y_{0: t-1}, U_{1: t-1}\right) \\
& =\eta^{\prime} p\left(\boldsymbol{\xi}_{0}\right) p(M) \prod_{t} p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, m_{c_{t}}\right) p\left(\boldsymbol{\xi}_{t} \mid \boldsymbol{\xi}_{t-1}, U_{t}\right)
\end{aligned}
$$

Factor Graph

- Factor graph representation of the full SLAM posterior $p\left(\boldsymbol{\xi}_{0: t}, M \mid Y_{0: t}, U_{1: t}, c_{0: t}\right)$

$$
=\eta p\left(\boldsymbol{\xi}_{0}\right) p(M) \prod_{t} p\left(Y_{t} \mid \boldsymbol{\xi}_{t}, m_{c_{t}}\right) p\left(\boldsymbol{\xi}_{t} \mid \boldsymbol{\xi}_{t-1}, U_{t}\right)
$$

Explicit Model

- N_{t} noisy 2D point observation of 3D landmarks in each image, known data association
$\mathbf{y}_{t, i}=h\left(\boldsymbol{\xi}_{t}, \mathbf{m}_{t, c_{t, i}}\right)+\boldsymbol{\delta}_{t}=\pi\left(\mathbf{T}\left(\boldsymbol{\xi}_{t}\right)^{-1} \overline{\mathbf{m}}_{t, c_{t, i}}\right)+\boldsymbol{\delta}_{t, i}$ $\delta_{t, i} \sim \mathcal{N}\left(0, \Sigma_{y_{t, i}}\right)$

- No control inputs
- Gaussian prior on pose $\xi_{0} \sim \mathcal{N}\left(\xi^{0}, \Sigma_{0, \xi}\right)$
- Uniform prior on landmarks

Full SLAM Optimization as Energy Minimization

- Optimize negative log posterior probability (MAP estimation)

$$
\begin{aligned}
E\left(\boldsymbol{\xi}_{0: t}, M\right)= & \frac{1}{2}\left(\boldsymbol{\xi}_{0} \ominus \boldsymbol{\xi}^{0}\right)^{\top} \boldsymbol{\Sigma}_{0, \boldsymbol{\xi}}^{-1}\left(\boldsymbol{\xi}_{0} \ominus \boldsymbol{\xi}^{0}\right) \\
& +\frac{1}{2} \sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}}\left(\mathbf{y}_{\tau, i}-h\left(\boldsymbol{\xi}_{\tau}, \mathbf{m}_{c_{\tau, i}}\right)\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{y}_{\tau, i}}^{-1}\left(\mathbf{y}_{\tau, i}-h\left(\boldsymbol{\xi}_{\tau}, \mathbf{m}_{c_{\tau, i}}\right)\right)
\end{aligned}
$$

- Non-linear least squares!! We know how to optimize this..
- Remark: noisy state transitions based on control inputs add further residuals between subsequent poses

Full SLAM Optimization as Energy Minimization

- Let's define the residuals on the full state vector

$$
\begin{aligned}
\mathbf{r}^{0}(\mathbf{x}) & :=\boldsymbol{\xi}_{0} \ominus \boldsymbol{\xi}^{0} \\
\mathbf{r}_{t, i}^{y}(\mathbf{x}) & :=\mathbf{y}_{t, i}-h\left(\boldsymbol{\xi}_{t}, \mathbf{m}_{c, i}\right)
\end{aligned}
$$

$$
\mathrm{x}:=\left(\begin{array}{c}
\xi_{0} \\
\vdots \\
\xi_{t} \\
\mathrm{~m}_{1} \\
\vdots \\
\mathrm{~m}_{S}
\end{array}\right)
$$

- Stack the residuals in a vector-valued function and collect the residual covariances on the diagonal blocks of a square matrix

$$
\mathbf{r}(\mathbf{x}):=\left(\begin{array}{c}
\mathbf{r}^{0}(\mathbf{x}) \\
\mathbf{r}_{0,1}^{y}(\mathbf{x}) \\
\vdots \\
\mathbf{r}_{t, N_{t}}^{y}(\mathbf{x})
\end{array}\right) \quad \mathbf{W}:=\left(\begin{array}{cccc}
\boldsymbol{\Sigma}_{0, \boldsymbol{\xi}}^{-1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \Sigma_{\mathbf{y}_{0,1}}^{-1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
\mathbf{0} & \cdots & 0 & \boldsymbol{\Sigma}_{\mathbf{y}_{t, N_{t}}}^{-1}
\end{array}\right)
$$

- Rewrite error function as $E(\mathbf{x})=\frac{1}{2} \mathbf{r}(\mathbf{x})^{\top} \mathbf{W r}(\mathbf{x})$

Recap: Gauss-Newton Method

- Idea: Approximate Newton's method to minimize $\mathrm{E}(\mathrm{x})$
- Approximate $\mathrm{E}(\mathrm{x})$ through linearization of residuals

$$
\begin{aligned}
& \widetilde{E}(\mathbf{x})=\frac{1}{2} \widetilde{\mathbf{r}}(\mathbf{x})^{\top} \mathbf{W} \widetilde{\mathbf{r}}(\mathbf{x}) \\
& =\frac{1}{2}\left(\mathbf{r}\left(\mathbf{x}_{k}\right)+\mathbf{J}_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right)\right)^{\top} \mathbf{W}\left(\mathbf{r}\left(\mathbf{x}_{k}\right)+\mathbf{J}_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right)\right) \quad \mathbf{J}_{k}:=\left.\nabla_{\mathbf{x}} \mathbf{r}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}_{k}} \\
& =\frac{1}{2} \mathbf{r}\left(\mathbf{x}_{k}\right)^{\top} \mathbf{W r}\left(\mathbf{x}_{k}\right)+\underbrace{\mathbf{r}\left(\mathbf{x}_{k}\right)^{\top} \mathbf{W} \mathbf{J}_{k}}_{=: \mathbf{b}_{k}^{\top}}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{\top} \underbrace{\mathbf{J}_{k}^{\top} \mathbf{W} \mathbf{J}_{k}}_{=: \mathbf{H}_{k}}\left(\mathbf{x}-\mathbf{x}_{k}\right)
\end{aligned}
$$

- Find root of $\nabla_{\mathbf{x}} \widetilde{E}(\mathbf{x})=\mathbf{b}_{k}^{\top}+\left(\mathbf{x}-\mathbf{x}_{k}\right)^{\top} \mathbf{H}_{k}$ using Newton's method, i.e.

$$
\nabla_{\mathbf{x}} \widetilde{E}(\mathbf{x})=\mathbf{0} \text { iff } \mathbf{x}=\mathbf{x}_{k}-\mathbf{H}_{k}^{-1} \mathbf{b}_{k}
$$

- Pros:
- Faster convergence (approx. quadratic convergence rate)
- Cons:
- Divergence if too far from local optimum (H not positive definite)
- Solution quality depends on initial guess

Structure of the Bundle Adjustment Problem

- \mathbf{b}_{k} and \mathbf{H}_{k} sum terms from individual residuals:

$$
\begin{aligned}
& \mathbf{b}_{k}=\mathbf{b}_{k}^{0}+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} \mathbf{b}_{k}^{\tau, i}=\left(\mathbf{J}_{k}^{0}\right)^{\top} \boldsymbol{\Sigma}_{0, \xi}^{-1} \mathbf{r}^{0}\left(\mathbf{x}_{k}\right)+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}}\left(\mathbf{J}_{k}^{\tau, i}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{y}_{\tau, i}, i}^{-1} \mathbf{r}_{\tau, i}^{\mathbf{y}}\left(\mathbf{x}_{k}\right) \\
& \mathbf{H}_{k}=\mathbf{H}_{k}^{0}+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} \mathbf{H}_{k}^{\tau, i}=\left(\mathbf{J}_{k}^{0}\right)^{\top} \boldsymbol{\Sigma}_{0, \xi}^{-1}\left(\mathbf{J}_{k}^{0}\right)+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}}\left(\mathbf{J}_{k}^{\tau, i}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{y}_{\tau, i}}^{-1}\left(\mathbf{J}_{k}^{\tau, i}\right)
\end{aligned}
$$

- What is the structure of these terms?

Structure of the Bundle Adjustment Problem

$$
\mathbf{b}_{k}=\mathbf{b}_{k}^{0}+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} \mathbf{b}_{k}^{\tau, i}=\left(\mathbf{J}_{k}^{0}\right)^{\top} \boldsymbol{\Sigma}_{0, \xi}^{-1} \mathbf{r}^{0}\left(\mathbf{x}_{k}\right)+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}}\left(\mathbf{J}_{k}^{\tau, i}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{y}_{\tau, i}}^{-1} \mathrm{r}_{\tau, i}^{\mathrm{y}}\left(\mathbf{x}_{k}\right)
$$

Structure of the Bundle Adjustment Problem

Sparse!

$$
\mathbf{H}_{k}=\mathbf{H}_{k}^{0}+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}} \mathbf{H}_{k}^{\tau, i}=\left(\mathbf{J}_{k}^{0}\right)^{\top} \boldsymbol{\Sigma}_{0, \boldsymbol{\xi}}^{-1}\left(\mathbf{J}_{k}^{0}\right)+\sum_{\tau=0}^{t} \sum_{i=1}^{N_{\tau}}\left(\mathbf{J}_{k}^{\tau, i}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{y}_{\tau, i}}^{-1}\left(\mathbf{J}_{k}^{\tau, i}\right)
$$

Example Hessian of a BA Problem

Pose dimensions
(10 poses)

Exploiting the Sparse Structure

- Idea:

Apply the Schur complement to solve the system in a partitioned way

$$
\begin{aligned}
& \mathbf{H}_{k} \Delta \mathrm{x}=-\mathbf{b}_{k} \longrightarrow\left(\begin{array}{cc}
\mathbf{H}_{\xi \xi} & \mathbf{H}_{\xi \mathrm{m}} \\
\mathbf{H}_{\mathrm{m} \xi} & \mathbf{H}_{\mathrm{mm}}
\end{array}\right)\binom{\Delta \mathrm{x}_{\xi}}{\Delta \mathrm{x}_{\mathrm{m}}}=-\binom{\mathbf{b}_{\xi}}{\mathbf{b}_{\mathrm{m}}} \\
& \longrightarrow \Delta \mathrm{x}_{\xi}=-\left(\mathbf{H}_{\xi \xi}-\mathbf{H}_{\xi \mathrm{m}} \mathbf{H}_{\mathrm{m}}^{-1} \mathbf{H}_{\mathrm{m} \xi}\right)^{-1}\left(\mathbf{b}_{\xi}-\mathbf{H}_{\xi \mathrm{m}} \mathbf{H}_{\mathrm{mm}}^{-1} \mathbf{b}_{\mathrm{m}}\right) \\
& \longrightarrow \Delta \mathrm{x}_{\mathrm{m}}=-\mathbf{H}_{\mathrm{mm}}^{-1}\left(\mathbf{b}_{\mathrm{m}}+\mathbf{H}_{\mathrm{m} \xi} \Delta \mathrm{x}_{\xi}\right)
\end{aligned}
$$

- Is this any better?

Exploiting the Sparse Structure

- What is the structure of the two sub-problems ?
- Poses:

$\mathbf{H}_{\xi \xi}-\mathbf{H}_{\xi \mathrm{m}} \mathbf{H}_{\mathbf{m m}}^{-1} \mathbf{H}_{\mathbf{m} \xi}=\mathbf{H}_{\xi \xi}-\sum_{j=1}^{S} \mathbf{H}_{\xi \mathbf{m}_{j}} \mathbf{H}_{\mathbf{m}_{j} \mathbf{m}_{j}}^{-1} \mathbf{H}_{\mathbf{m}_{j} \xi} \quad \mathbf{b}_{\xi}-\mathbf{H}_{\xi \mathrm{m}} \mathbf{H}_{\mathbf{m m}}^{-1} \mathbf{b}_{\mathbf{m}}=\mathbf{b}_{\xi}-\sum_{j=1}^{S} \mathbf{H}_{\xi \mathbf{m}_{j}} \mathbf{H}_{\mathbf{m}_{j} \mathbf{m}_{j}}^{-1} \mathbf{b}_{\mathbf{m}_{\mathbf{j}}}$

Reduced pose Hessian

Exploiting the Sparse Structure

- What is the structure of the two sub-problems ?

$\mathrm{b}_{\xi} \square_{-}^{\square-\sum_{j=1}^{S}} \quad \square=\square \quad \square$

$$
\mathbf{H}_{\xi \mathbf{m}_{j}} \mathrm{H}_{\mathbf{m}_{j} \mathbf{m}_{j}}^{-1} \mathrm{~b}_{\mathrm{m}_{\mathrm{j}}}
$$

Exploiting the Sparse Structure

- What is the structure of the two sub-problems ?
- Landmarks: $\Delta \mathrm{x}_{\mathrm{m}}=-\mathrm{H}_{\mathrm{mm}}^{-1}\left(\mathrm{~b}_{\mathrm{m}}+\mathbf{H}_{\mathrm{m} \xi} \Delta \mathrm{x}_{\xi}\right)$

- Landmark-wise solution
- Comparably small matrix operations
- Only involves poses that observe the landmark

Exploiting the Sparse Structure

Exploiting the Sparse Structure

Camera on a moving vehicle (6375 images)

Flickr image search „Dubrovnik" (4585 images)

- Reduced pose Hessian can still have sparse structure
- However: For many camera poses with many shared observations, the inversion of the reduced pose Hessian is still computationally expensive!
- Exploit further structure, e.g., using variable reordering or hierarchical decomposition

Effect of Loop-Closures on the Hessian

Effect of Loop-Closures on the Hessian

Not band matrix: costlier to solve

Further Considerations

- Use matrix decompositions (f.e. Cholesky) to perform inversions
- Levenberg-Marquardt optimization improves basin of convergence
- Heavier-tail distributions / robust norms on the residuals can be implemented using Iteratively Reweighted Least Squares
- Twists are also a suitable pose parametrization for bundle adjustment: optimize increments on the twists
- Many further tricks to improve convergence/robustness/run-time efficiency, f.e.:
- Preconditioning
- Hierarchical optimization
- Variable reordering
- Delayed relinearization

Triangulation

Triangulation

- Goal: Reconstruct 3D point $\widetilde{\mathbf{x}}=(x, y, z, w)^{\top} \in \mathbb{P}^{3}$ from 2D image observations $\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}\right\}$ for known camera poses $\left\{\mathbf{T}_{1}, \ldots, \mathbf{T}_{N}\right\}$
- Linear solution: Find 3D point such that reprojections equal its projections

$$
\mathbf{y}_{i}^{\prime}=\pi\left(\mathbf{T}_{i} \widetilde{\mathbf{x}}\right)=\binom{\frac{r_{11} x+r_{12} y+r_{13} z+t_{x} w}{r_{3} 11+r_{23} y+r_{33} z+t_{z} w}}{\frac{r_{21} x+r_{22} y+r_{23} z+t_{y} w}{r_{31} x+r_{32} y+r_{33} z+t_{z} w}}
$$

- Each image provides one constraint $\mathrm{y}_{i}-\mathrm{y}_{i}^{\prime}=0$
- Leads to system of linear equations $\mathbf{A} \widetilde{\mathrm{x}}=0$, two approaches:
- Set $w=1$ and solve nonhomogeneous system
- Find nullspace of A using SVD
- Non-linear solution: Minimize least squares reprojection error (more accurate)

$$
\min _{\mathbf{x}}\left\{\sum_{i=1}^{N}\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{\prime}\right\|_{2}^{2}\right\}
$$

Lessons Learned Today

- SLAM is a chicken-or-egg problem:
- Localization requires map
- Mapping requires localization
- Unknown association of measurements to map elements
- Bundle Adjustment has a sparse structure that can be exploited for efficient optimization
- Reduction of BA to pose optimization problem through marginalization of landmarks (using the Schur complement)
- Loop closure constraints make SLAM optimization problem less efficient to solve (but reduce drift!)

Further Reading

- Probabilistic Robotics textbook

Probabilistic Robotics,
S. Thrun, W. Burgard, D. Fox, MIT Press, 2005

- Triggs et al., Bundle Adjustment - A Modern Synthesis, 2002

Thanks for your attention!

