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Motion Estimation

The estimation of motion fields from image sequences is
among the central problems in computer vision.

With increasing amount of image sequence data — more
and more video-capable cameras, higher frame rates,
videos on the internet — image sequence analysis is
becoming increasingly important.

Compared to still images, video contains an enormous
amount of information about the world surrounding us in
the sense that structures can often be distinguished based
on their temporal evolution.

Some applications of motion estimation are already
integrated in camera software — panorama generation
from several images, video stabilization to remove camera
shake, etc.

Mathematically the problem of motion estimation from
images is an ill-posed problem, which means that the
question is not sufficiently specified to assure a unique
solution.
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The Correspondence Problem

Algorithmically, the key challenge in motion estimation is to
solve the correspondence problem. Given two images,
determine for each point in either image the corresponding
partner in the other image. Many computer vision problems are
inherently such correspondence problems:

e Disparity estimation from stereo images: Determine a
one-dimensional displacement for each pixel to determine
the corresponding pixel in the other image. This
displacement is inversely proportional to the depth of the
respective point.

¢ Multimodal registration: Given two medical images of an
organ acquired with different sensors — for example CT
(Computer Tomography) and MRI (Magnetic Resonance
Imaging), or CT and PET (Positron-Emission Tomography)
— compute an optimal alignment of these images.

e Shape Matching: Given two object shapes (contours in 2D
or surfaces in 3D), determine a correspondence between
pairs of points from either shape.
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Motion and Grouping

Moving regions of random brightness values
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Motion and Grouping

Moving wallpaper regions
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Motion and Grouping

Automatic segmentation of the moving regions.
Cremers, Yuille, DAGM 2003
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wallpaper_segmentation2.avi
Media File (video/avi)


Motion and 3D Structure

Several images of a static scene filmed by a moving camera.

Foreground objects move faster than background objects.
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Motion and 3D Structure

Schoenemann & Cremers,
Near Real-time Motion Segmentation, DAGM 2006.
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Motion Estimation and

Motion and Transparency Optical Flow
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Applications of Motion Estimation

Grouping and Segmentation: Motion information allows to
identify image regions as objects. This can also be done if
semi-transparent structures overlap at a given location.

Tracking: Using motion information, objects can be tracked
in a video sequence.

Depth estimation: Motion information allows to infer the
distance of respective objects from the camera. In
principle, one can recover the 3D geometry of the world
from an image sequence.

Time-to-Impact: In the context of driver assistance, motion
information allows to make predictions when an obstacle
will be hit. As a consequence, one can initiate evasion
maneuvers or breaking.

Video compression: Motion information allows to efficiently
compress videos (MPEG encoding).

Motion Estimation and
Optical Flow

Prof. Daniel Cremers

The Aperture Problem

The Optical Flow
Constraint

Regularity Assumption
Lucas and Kanade
Horn and Schunck
Comparison

Limitations of Classical
Approaches

Brox et al. 2004
Wedel et al. 2009
Motion Segmentation

Scene Flow Estimation

updated 2020-01-27 11/49



The Aperture Problem

In general, one cannot estimate motion in direction of constant
brightness (for example along an image edge). This limitation
is referred to as the aperture problem. For example: No matter
how the horizontal stripe pattern behind the mask is displaced,
we will only observe its vertical motion.
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The Aperture Problem: Measurability

Consider three observers each watching a local patch of a
moving black box.

3

Observer 1:  no motion can be observed
Observer 2:  horizontal motion only

Observer 3: motion in both directions
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The Brightness Constancy Assumption

Given an image sequence /: Q x [0, T] — R, on the image
plane Q C R? and the time interval [0, T], we wish to compute a
motion field v : Q x [0, T] — R2, which assigns to each point

x € Q at each time t € [0, T] a motion vector v(x, t).

Let
x:[0,T] = Q

denote the trajectory of an object point over time. The classical
assumption in motion estimation state that the brightness of a
moving point remains constant over time:

I(x(t),t) =const. Vte]0,T]
Assuming the brightness function to be differentiable, we can
deduce that the total time derivative must vanish:

d ax(f)  al(x(t), 1)

(0.0 = VI, = S =0 Wt [0,T]
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The Optic Flow Constraint

The term v(x, ) =
point that we are looking for. Thus the assumptions of
brightness constancy and differntiability lead to a relation
between the desired velocity field v(x, t) and the spatial and
temporal image gradients:

VITV+It:0

This equation is referred to as the differential brigthness
constancy constraint or the optic flow constraint.

The optic flow constraint reflects the previously discussed
aperture problem: It does not allow statements regarding
motion along the level lines of constant intensity. More
specifically, let ¥V = v + n be a modified motion field with  an
arbitrary vector field normal to the image gradient V/. The v
also fulfills the optic flow constraint:

VIT V+ lt

VITv+n)+h=VITv+ 1 =0.

% is nothing but the velocity of the moving
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The OFC and the Aperture Problem

The aperture problem is reflected in the optic flow constraint
because the constraint is invariant to changes in the motion
field which are orthogonal to the local image gradient.

The central problem in motion estimation lies in the fact that the
constraint coupling the velocity field v(x, t) and the image
gradients cannot be directly solved for v.

More specifically, the flow constraint provides the projection v
of the velocity vector v onto the image gradient V/. Dividing
the OFC by |V /| leads to:

so= (N TV_,L
L= v ]

This component of the velocity normal to the level lines is
called the normal flow. It is simply given by the negative ratio of
temporal and spatial image gradient.
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Example: Traffic Scene

I~ h(x) — ()]

Author: Daniel Cremers
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Additional Assumptions: Spatial Regularity

The optic flow constraint is necessary but not sufficient to
uniquely determine a motion field. It only specifieds the normal
component of the velocity field.

In order to eliminate the additional degree of freedom, we
therefore need to make additional assumptions.

Two pioneering approaches:

e [ucas and Kanade 1981: Assume that the velocity in an
entire window around each point is constant. If the window
is “sufficiently” large one obtains a unique solution. (over
11100 citations in Jan 2016).

e Horn and Schunck 1981: A variational approach to motion
estimation based on the assumption of spatial smoothness
of the the flow field v(x, t). Extensions to temporal
smoothness are straight-forward. (over 11600 citations in
Jan 2016). This paper is often considered the first
variational method in computer vision.
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Motion Estimation and

Lucas and Kanade Optical Flow
For each point (x, y) € Q c R? and time t € [0, T], Lucas und Prot. Daniel Cremers

Kanade (1981) separately determine a motion vector v(x, y, )
by assuming that the motion field is constant in a certain
neighborhood U, (x, y) C € around this point.

The motion vector v = (v4, v2) is determined in a least squares Motion Estimation
manner by minimizing the energy: The Aperture Problem

The Optical Flow
Constraint

2 2
E ( V) _ / (V My+ It) dx’ dy’ _ / ( Levi+ Iy Vot /t) adx’ dy’ Regularity Assumption
Us(x,y) Uz (x.) Horn and Schunck

Comparison

The necessary condition for optimality is that the partial Limitaions of Glassical
derivatives of this energy with respect to the two parameters v Lnaces
and v» must vanish: Brox et al. 2004

Wedel et al. 2009

Motion Segmentation

Scene Flow Estimation

DE(v) :

Sy = /IX(IXV1+va2+It)dX’dy’:O
U ()

_ //y(lxv1+/yv2+/,) X' dy’ £ 0

Us(x,y)

OE(v)
6V2
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Lucas and Kanade

OE(v) :

W / b(hovi + e + ) ox' dy' £ 0
Us(x.y)

DE(V) :

e = /ly(lxv1+lyv2+lt) dx' dy’ =0
Us (x.9)

Since v; and v, are assumed constant over U, (x, y) we can
extract them from the integral and obtain a linear equation
system of the form:

Mv =b = v=M'b
where
M:/VIVIT dx’' dy’, and b= (z;) = —/VII, dx’ dy’
Us(x,¥) Us(x,y)

For each point determine v by inversion of a 2 x 2-matrix.
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Motion Estimation and

Lucas and Kanade Optical[Flow

Prof. Daniel Cremers

In the original approach of Lucas and Kanade all points of the
window U, (x, y) are treated equally. In practice, it is preferable
to give more weight to the central pixels. The corresponding
cost function is then: Motion Estimation

The Aperture Problem
2 2
E(v) = / Golx—xX)(VITvth) o dy' = Gy o (VITv4 ), Tdst™
Q

Regularity Assumption

LucasandKanade
where the squared optic flow constraint is weighted by some Horn and Schunck
function G, (for example a Gaussian kernel). The Comparison
corresponding linear equation system is given by Aatone of Classica

Brox et al. 2004

M,v = b, where Wedel et al. 2009

Motion Segmentation

2
Mo’ _ GU*(VIVIT) — Gg’ » Ix /ley ; and bo’ — _GU*(VII[) Scene Flow Estimation
bl P

The matrix M, is called structure tensor.
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Lucas and Kanade: Solutions?

The goal of Lucas and Kanade was to dermine a unique
velocity vector under the assumption of local constancy of the
velocity. Depending on the local intensity structure there are
three possible cases (see slide 13):

@ The brightness is entirely constant over U,, then the
gradient V/ is zero in the neighborhood, the matrix M is 0
and no velocity can be estimated. (Test: trace(M) < ¢ ?)

® All image gradients in the neighborhood U, are colinear.
Then rank(M) = rank(V/VI") = 1. The matrix M has only
one non-zero eigenvalue. It is not invertible, but one can
determine the normal flow: v, = —1;/|VI]. (Test:
det(M) <€ ?)

® The gradient V/ in the window U,, takes on multiple
directions. Then we have rank(M) = 2 or. det(M) # 0 and
we can determine the velocity vector v by matrix inversion.
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Motion Estimation and

Lucas/Kanade: Example Optical Flow
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Hue encodes direction, brightness encodes magnitude.

Author: Thomas Brox
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Horn and Schunck

The approach of Horn and Schunck (1981) is considered the
first variational approach in computer vision (cf. Snakes: 1988,
Mumford-Shah: 1989). In addition to the optic flow constraint
for each point, one assumes spatial smoothness of the velocity
field v(x):

2

E(v) = / (VITV+ lt) dxdy + A /le(x)|2 dx dy.
Q Q

Increasing smoothness of the flow field can be imposed by

increasing the weight A > 0 of the regularizer. In contrast to

standard notation, Vv does not refer to the divergence of the
flow field but to the gradients in each component:

V(X2 = Vi (x)]? + [Vva(x)

In contrast to Lucas and Kanade, the approach of Horn and
Schunck gives rise to a spatially dense flow field.
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Euler-Lagrange Equations

Let v = (v4, v2) be the flow field with components v and v, in
x- and y-direction. The minimizer of the Horn and Schunck
functional

E(v) = %/(wa +va2+lt)2 + A ([Vvi(X) 2+ |Vwa(X)[?) dx dy.

Q

must fulfill the Euler-Lagrange equations:

oE
87\/1 - IX(IXV1 + IyVQ + It) - )\AV‘] - O
OE
87\/2 - /y(/XV1 + lyV2 + I[) - )\AV2 = 0

These equations are linear and can be solved with a
Gauss-Seidel or Jacobi solver. The regularizer imposes
smoothness of the computed flow field. It generates a fill in
effect: Components of the velocity field which are not affected
by the optic flow constraint are simply adopted from
neighboring regions.
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Motion Estimation and

Horn/Schunck: Examples Optical Flow
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Lucas/Kanade vs. Horn/Schunck

Advantages of Lucas/Kanade:

e Fast and simple computation,

e often acceptable and robust results,

Advantages of Horn/Schunck:

e dense flow fields,

e more general: allows for non-translational motion such as
rotation,

e strict convexity assures unique solution,

e global fill-in effect, smoothness can be regulated by the
parameter \.

e further extensions: discontinuous flow fields,
segmentation,...
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Limitations of Both Approaches

e Small motion assumption: The optic flow constraint only
holds infinitesimally and thus only applies to small velocity.
In general brightness constancy implies:

l(x) = b(x + v(x)).

Linearization (for small v) leads to the optic flow
constraint. For larger motions it is no longer valid.

Brightness constancy: The assumption of brightness
constancy is not always valid: Light reflexes on shiny
materials, multimodal image registration (where modalities
like CT and PET assign different brightness values to the
same structure), lighting variations over time, automatic
gain control in the camera, etc.

The approach of Horn and Schunck tends to oversmooth
flow fields. In particular, it does not allow for disontinuities
in the flow field.

The above approaches are formulated for two images. In
general we have sequences with many images.
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Further Advances

Since the pioneering works of Lucas/Kanade and
Horn/Schunck a multitude of publications on optic flow

estimation have appeared. A paper which integrates a number

of advances is Brox et al., ECCV 2004:

¢ Discontinuity-preserving smoothness:

/\Vv|2dx — /|Vv|dx

e Coarse-to-fine warping scheme to allow for larger motion:

IVITV+ L2 = [h(x) = b(x+ v)?
® Robust non-quadratic data terms to allow for outliers:
[h(x) = b(x + V)2 — [h(X) = h(x+ V)]

e Gradient constancy to account for global brightness
changes.
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Motion Estimation and

Further Advances Optical[Flow

Prof. Daniel Cremers

Over the years, the Horn and Schunck approach was modified
to the form:

E( V) = Edata( V) +« Esmooth( V);
Motion Estimation
m|t The Aperture Problem

The Optical Flow
Constraint

Edata(v) = /1/)< |I2(X+V) - I1 (x)’2 +’Y IVI2(X+V) - VI1 (x)|2> dx7 Regularity Assumption

Lucas and Kanade

brightness constancy gradient constancy

Horn and Schunck
Comparison

and

Limitations of Classical

Esmooth(V) = /’¢ (|V3U|2 + |V3W|2) dx7 Approaches

Wedel et al. 2009

where

Motion Segmentation

X = (X, y, t), V= (U, W, 1)’ and V3 = (ax, ay, 8[), Scene Flow Estimation

and

P(s?) = V2 + e
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Motion Estimation and

Discontinuity-preserving Flow Fields Optical Flow
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Author: Thomas Brox
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Motion Estimation and

Experimental Comparison Optical Flow
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Motion Estimation and

Further Advances Optical Flow
Due to various benchmarks like the Middlebury optical flow Prof. Daniel Cremers
benchmark the topic of optical flow estimation has gained
renewed interest. Three further improvements contained in the
paper Wedel et al., “Adaptive Regularization...”, ICCV 2009 are:

Motion Estimation

¢ Quadratic relaxation to decouple data term and The Aperture Problem
regularizer: The Optical Flow
Constraint
Regularity Assumption
mvln/ |I2(X + V) — I1 (X)} + |VV|dX Lucas and Kanade

Horn and Schunck
. 1 2 Comparison

- rTV1,ILII1/ |I2(X T V) N I1 (X)} + |VU| + E|U n V| dX Limitations of Classical
Approaches

Brox et al. 2004

Motion Segmentation

¢ Data-dependent regularization which favors flow edges to
coincide with image edges:

Scene Flow Estimation

/|VV|dX — /exp(—a|VlU|O‘)|VV| d?x
Q

® Rigid body regularization to impose rigid body motion
rather than smoothness.
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The Middlebury Benchmark (2011) e

Prof. Daniel Cremers

Optical flow evaluation results ~ Statistics: Average SD R0O.5 R10 R20 AS0 A75 A%
Error type: endpoint angle interpolation normalized interpolation

Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
endpoint (Hidden texture) | (Hidden texture) | (Hidden texture) | (Hidden texture) (Synthetic) (Synthetic) (Synthetic) (Stereo)
error avg| GT im0 imt G im0 iml 6T im0 imt 6T im0 iml 6T im0 imi GT im0 imi 6T im0 imi G imd iml
rank| al disc untext) al disc untext disc untext| al disc untext| al disc untext| al disc untext| al disc untext| al disc untex
Adsptive [20] | 44| 0091 0.261 0061 0.235 078 02130481 0915 0401|0885 1,253 0.735| 0505 1285 0313]014100.16:20.2219] Q653 1.373 0794,
c OF [21]] 57| 011 0285 0105|0181 0630421 qts 0.75W0481| 0192 097 0.123[0.87 10 1316 100|178 1.737 087 | 0114 0122 0.2210] 068+ 1481 055
‘Aniso. Huber-L1 22) | 58| 0,103 028 0.0830.3111 088 8828 2|0\ 410 1128929 2| 0.20¢ 092¢ 0.13:| 0.842 1202 0.702[ 0391 1.231 0.281[0.07 5 0.15 027 1| 0642 1.362 0.794, Motion Estimation
DPOF[18] | 6104312035 0.09¢| 0.25¢ 0.795 0213[0.192 0,621 0.1 110741 1091 0491|0667 1.8010 0635[0.19170.17 0355 0501 1081 0551 The Aperture Problem
VAT 720091 0261 0072|0205 0713 0.162] 0537 1185 0225|0217 126 0.112] 0904 1.31¢ 0723|151+ 19311 084 1[018 160,171 03 1] QT35 1625 0877
CBF[12) | 78010 0285 0.09¢[0.34 2 0.805 0.7 1 0.435 0855 0268|0217 1.14s 0.13¢] 0904 1.27¢ 0827 Q.12 1231 0302]02320.190.3921 0765 1.56¢ 1.025 The Optical Flow
Broxetal (5] | 840,115 0.320 0.112] 0275 0931 0225] 039+ 0944 02470245 1252 0.135 110101392143 7] 4895 1775 0557|0102 0134 011[091 1 1832 1.031] Constraint
Rannacher (23] | 85 | 0115 0.315 009¢[ 0256 0847 0218|067 21.271s 0.26¢] 0245 1,321 0.135] 0.917 1335 0.723[149131.96» 0785|0152 0.147 0.26'9| 0.69¢ 1585 08¢

411910 0.265(0.27 151.36 5 0.16 2| 090+ 1.305 0.786| 0544 1,625 0.364| 0.13¢ 0153 0.203| 0,684 1.56¢ 062 Regularity Assumption
0572125 ¢ 0.26] 0.20¢ 1.045 0123 0945 1.345 0835 0615 19311 0.476[020160.16120.34 s|077 0164 101,079
2 0662 0236 0.20¢ 1.1910 0.145|1.07 11 1.4213 1.2213|1.35 10 1.495 0.8613/0.20 13 0.20 21 0.26 13] 1.07 12 2.07 16 1.39 1

FTV-L1 [15] 8.8 (0.14130.35120.1415/0.34 12 0.98 12 0.26 11
Second-order prior [8] | 9.0 0.1 0.31¢ 0.09¢| 0.8 0.931 0.207.
Fusion [6] 940.115 0.341% 0.105| 0.192 0.692 0.162

Lucas and Kanade

Dynamic MRF 7] {11.1[0.4211 034 100.11{ 0.22¢ 0.89 0162 0.44¢ 1.137 0.202] 0245 12915 014314114 1.5217 113 2] 1541623720083 ] 0135 0122 0.31 1| 1.27 1823320166 1] Horn and Schunck
SegOF(10] [11.7]0.1510.36 ¢ 0.105 0.7 1 1.16150.59 16| 06815 1.24 12064 1]0.3215 0.862 0.26 16| 11817 1.50 % 1.47 6] 16318209+ 0.96 6 0.08 1 0.13¢ 0.122[ 0707 1.505 0693
Learning Flow [11] [13.3] Q.15 0325 0.09¢]0.29100.99130.23 10] 0.559 1.24 120.2912{0.3 16 1.56 17 0.25 14| 1.25 9 1.64 21 1.41 18] 1.55 1723219 0.85 12)0.14 10 0.18 18 0.24 12)1.09 16 2.09 18 1.27 Comparison

Fiter Flow [19] 143Mveﬂ.JQiW.lSuQA}MI.DSHD.BBHIQ,HV& 1.34160.781/0.70 19 1.54 16 0.68 19] 1.13 16 1.38 11 1.51 19 0.575 1.324 0445/0.22200.23230.2613]0.96 1216611 1.1211

Limitations of Classical
GraphCuts [14] [14:5]0.16 5 0.38150.14 10.59.5 1.361 0. 1] 0.6 1,075 064 14]0.26 2 1.145 0.17 [ 0969 1.35 10084 0]2253 1.795 1.2220.22200.171:0.432[1.227 205 1517819 (e o Clkesie

Approach
Black & Anandan 4] [15.0[0.18 7 0.¢2170.19 | Q.58 7 1.31 170,50 ] 0.86 91,5815 0.10 {049 7 1.59 0.5 1| 108 2 1.4212 1221 14311 22817 0830|052 017 0,176 L111984 1301 pproaches
SPSAdearn[13] 15701817 0.45150.07 1]0.57 1513215051 v 0.84 17150 17 0.72 1 0.52 11,6419 0.49 | 1.12 1514215 1.39 1| .75 15 2.14 15 1.08| 0.136 0.134 0.197(132192.08 1717319 Brox et al. 2004
GroupPlow (8] _[153]02115 05115021 5{0.79:11.69210.721|0.8 916415074030 1.077 025129221812 0827194212308 136 0114 0147 0197106919613 T

DCLG[1] | 17.4]0.282 06222021 18|0.67201.21 15 0.70.0] 1.1221 1.8021 0.9922|1.07 2 2,062 1.1222| 1.23 181,52 17 1.6222] 1.54 121516 0.96 1 0.102 0411 0.1641.38202.26 13 1.8319)
Horn & Schunck [3] [18.6{0.222 0.55&0,22:1@*”.533:0.52» 11.01201.73200.8020{0.78 20 2.0220 0.77 20| 1.26 20 1.58 15 1.55 20 1.43 11 2.59 22 1.00 18] 0.16 1¢ 0.18 15 0.153]1.5121 2.5021 18821}
THDOFE [24] 19.6(0.3825 0.6423 0.47 23/ 1.16 22 1.72221.26 22| 1.3923 2.062¢ 1.1723{ 1,292 2.21 23 1.41 23/ 1.27 21 1.6120 1.57 21| 1.289 2.5721 1.0115| 0.136 0.159 0.16¢|1.8722.7122532)
FOLKI[16]  [226(0.29220.73240.3322] 15221 1.96 24 1.8025]1.2322 2,042 0.9521|0.9921 2.20 22 1.0821| L5323 18520 2.07 ] 204 2 32324 1.602]0.26 23 0.2 220.68:0{ 267 23 3.27 243223 Scene Flow Estimation
Pyramid LK [2)  (23.7/0.382¢ 0.6121 0.612¢|1.672¢1.78252.002¢1.502¢ 1.97 22 1.38 2¢/ .57 24 2.39.2¢ 1.78 2¢{2.942¢ 3.7220 2.9824|3.332¢ 2.74 23 2.4324/0.30 2¢ 0.24 2¢ 0.73 2¢{ 3,80 2¢ 5.08 2 4.882¢
love the mouse over the numbers in the table to see the corresponding images. Click to compare with the ground truth.

Motion Segmentation

Source: Baker et al., “A Database and Evaluation Methodology
for Optical Flow”, [JCV 2011.
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The Middlebury Benchmark (2011)

Algorithm Data term Prior term Optimization Misc.
2 =
LN £ w =& £
= |8 . g2 £
ZIZE| 2| 2], g g 5
R ENERE- 2R Mk 2 s
a = o - o 3
z | B|E =|lE17|2|s|8| 2 - | E =
2 5|2 E|lg|%|e|lB|E|25|s|8|E g
sl 2|22 |28 |2 |E|5|aElE|E|8 8|22
Slsl2lellals|Z 2|8 3| 2|25 558 =
12| E SIE2|E|Z|2|5|E|E|E|2|2)| 35 2
- |0 |C 2O | |< | T | x olo|lo|lala — o
Adaptive (Wedel ct al. 2009) X X || X X | X X X
Complementary OF (Zimmer ct al. 2009) X X | X X |X|x X X
Aniso. Huber-L1 (Werlberger et al. 2009) X X X | x X
DPOF (Lei and Yang 2009) X X X X X X | X
TV-L1-improved (Wedel et al. 2008) X X X X
CBF (Trobin et al. 2008) X X X X X
Brox et al. (Brox et al. 2004) X X X X X
F-TV-L1 (Wedel et al. 2008) X X X X
Second-order prior (Trobin et al. 2008) X X X
Fusion (Lempitsky et al. 2008) X X X | X X X X
Dynamic MRF (Glocker et al. 2008) X X
Seg OF (Xu et al. 2008) X X X X | X
Learning Flow (Sun et al. 2008) X | X X X X X
Filter Flow (Seitz and Baker 2009) X X X X X X X
Graph Cuts (Cooke 2008) X X X X
Black & Anandan (Black and Anandan 1996) X X X
SPSA-learn (Li and Huttenlocher 2008) X X X X X
Horn & Schunck (Horn and Schunck 1981) X

Source: Baker et al., IJCV 2011
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Motion Segmentation

Hand moving toward camera
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Motion Segmentation

The estimated motion is typically not the final goal of image
analysis. In a real-world video one may be interested in
segmenting the differently moving objects.

Motion-based segmentation is a chicken-and-egg problem: To
reliably estimate motion, we need a certain support-area
(ideally the entire region which moves coherently). Yet, in order
to partition the image plane into coherently moving region, we
need to know the motion at each pixel.

In Cremers, Soatto, IJCV 2005, we tackled this
chicken-and-egg problem, proposing a method to jointly
estimate a segmentation and motion vectors v; associated with
each region ;:

n
E(Q,....Qn Vi, .., V) = Z/WFV,- + k2 dx + 4|09
i=1 Q
This can be seen as a variation of the Mumford-Shah model,

where rather than estimating the average brightness of each
region we estimate its average motion.
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Piecewise Parametric Motion Segmentation

While the above model allows to separate differently translating
regions, in many real world scenarios objects undergo rigid
motion giving rise to rotational or zooming flow fields.

The above model can be extended to allow a parametric
motion for each region:

X 10 0 O
V/(X):S(X)p,-: (0 g 0 x y 1 ) (a,- bicid;e f/)T,
with a vector p; € R® defining an affine motion for region ;.

The variational approach

n

E(@rr.o Ry opo) = 3 [ V700 prichf i+ 509,
=19,

leads to a piecewise parametric motion field. In the two-region

case, this can be solved at around 30 fps — see Schoenemann,
Cremers, DAGM 2006.
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Motion-based segmentation into depth layers.
Cremers, Soatto, IJCV 2005.
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Piecewise Parametric Motion Segmentation

Hand moving toward camera

Cremers, Soatto, IJCV 2005.
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Piecewise parametric motion segmentation with level sets

Cremers, Soatto, IJCV 2005.

updated 2020-01-27 41/49



hand_zooming_segmentation2.avi
Media File (video/avi)
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Rotating hand

Cremers, Soatto, IJCV 2005.
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rotating_segmentation2.avi
Media File (video/avi)


Motion in 3D: Scene Flow

The optical flow gives the motion in the image plane,
sometimes referred to as the apparent motion. Based on
stereo video one can jointly estimate depth maps and a dense
3D motion field called scene flow.

Let I(x, y,t)" and I(x, y,t)" be the left and right images at pixel
(x,y) and time t and d the stereo disparity for that pixel.
Wedel et al. ‘08 make several constancy assumptions:

Ix,y, )¢ = Ix+uy+v,t+1)

Ix+d,y,t)y = Ix+d+d+uy+v,t+1),

where d’ denotes the change in disparity (motion in
z-direction). Enforcing consistency of the left and right images
attime t 4+ 1 leads to:

Ix+uy+v,t+ 1) —I(x+d+d +uy+v,t+1) =0.
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Variational Scene Flow Estimation

Wedel et al. ‘08 combine these assumptions with a
smoothness prior for variational scene flow estimation:

with

E(u,v,d") =

Edata + Esmooth )

Ejua = /‘I(X—F uy+v,t+1)° —I(x,y, t)g‘dxdy

[
i/

and

where ¢: Q—{0,1}, ¢(x,y)=

+ [ c(x, y)’ (Xg+d +u,y+v,t+1) — I(xq,y, t)"

dxdy

c(x y)’ (Xg+d'+u,y+v,t+1) — I(x+u,y+v, t+1)e‘dxdy,

Q

Esmooh = / \/)\|VU‘2 + )\|VV|2 + ’}’lVC/IFdXd}/7

0 if there is no disparity at (x, y).
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Motion in 3D: Scene Flow

3D Scene Flow

Leftimagelat time t

Left image attime t+ 1

Wedel, Brox, Vaudrey, Rabe, Franke, Cremers, “Stereoscopic
Scene Flow Computation for 3D Motion Understanding’,
Int. J. of Computer Vision 2011.
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Motion in 3D: Scene Flow

3D Scene Flow

SGM stereo

Wedel, Brox, Vaudrey, Rabe, Franke, Cremers, “Stereoscopic
Scene Flow Computation for 3D Motion Understanding”,
Int. J. of Computer Vision 2011.
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Motion in 3D: Scene Flow

Wedel, Brox, Vaudrey, Rabe, Franke, Cremers, “Stereoscopic
Scene Flow Computation for 3D Motion Understanding’,
Int. J. of Computer Vision 2011.
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wedel_short.avi
Media File (video/avi)


Motion in 3D: Scene Flow

Andreas Wedel
Daniel Cremers

Stereo Scene Flow
for 3D Motion
Analysis
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