
Variational Methods for Computer Vision: Exercise Sheet 1

Exercise: October 23, 2019

Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, how-
ever, writing it down will help you present your answer during the tutorials.

1. Refresher: Multivariate analysis.

(a) For a function f : Rn → R, the gradient is defined as ∇f = (∂f/∂x1, . . . , ∂f/∂xn)
>.

Calculate the gradients of the following functions.

i. f : R2 → R, f(x) = 1
2‖x‖

2
2,

ii. f : R2 → R, f(x) = ‖x‖2.

Are there any points where the gradient is undefined?

(b) For a function f : Rn → Rm, the Jacobian matrix at the point a ∈ Rn is defined as

Jf (a) :=


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 ∈ Rm×n.
Calculate the Jacobian matrix of the following functions:

i. f : R×R→ R2, f(r, ϕ) = (r cos(ϕ), r sin(ϕ))>,
ii. f : R→ R2, f(t) = (r cos(t), r sin(t))>.

(c) For a function f : Rn → Rn, the divergence is defined as div f =
∑n

i=1 ∂fi/∂xi. Calcu-
late the divergence of the following functions:

i. f : R2 → R2, f(x, y) = (−y, x)>,
ii. f : R2 → R2, f(x, y) = (x, y)>.

(d) For a function g : R2 → R2, the curl is defined as curl g = ∂g2/∂x− ∂g1/∂y. Calculate
the curl of function 1(c)i. Prove that the identity curl(∇f) = 0 is true for any twice
continuously differentiable function f ∈ C2(R2;R). Verify the identity with your result
from 1(a)i.

(e) When integrating a function f : S → R over an open subset S ⊂ Rn using a parametriza-
tion P ⊂ Rn, φ : P → S, the Jacobian of φ has to be taken into account as follows:∫

S
f(s) ds =

∫
P
f(φ(p))|det Jφ(p)|dp.

For γ : [a, b]→ Rn, the line integral over a scalar field f : Rn → R is given by∫
γ
f ds =

∫ b

a
f(γ(t))‖γ′(t)‖2 dt

i. Calculate the area enclosed by a circle of radius R.
ii. Calculate the circumference of a circle of radius R.



The results from task 1b might be helpful.

(f) The divergence theorem (a special case of Stokes’ theorem) states that an integral of the
divergence of a function f : S → Rn over a subset S ⊂ Rn can be replaced by an integral
over the boundary ∂S of S: ∫

S
div f ds =

∫
∂S
〈f, n〉ds,

where 〈·, ·〉 is the dot product and n the unit vector pointing in the direction normal to the
boundary.
Convince yourself that this formula holds using f from task 1(c)ii and with S being a disk
of radius R.

2. Convolutions and the Fourier transform.

(a) Let f, g, h ∈ L1(R) be absolutely integrable functions. Consider the convolution of the
functions f and g:

(f ∗ g)(x) =
∫
R

f(y) g(x− y) dy.

Show the following three algebraic identities:

i. (f ∗ g) ∗ h = f ∗ (g ∗ h)
ii. f ∗ g = g ∗ f

iii. f ∗ (g + h) = f ∗ g + f ∗ h
(b) Let F denote the Fourier transform operator:

F{f} := f̂(ν) =

∫
R

f(x)e−2πixν dx.

Prove that the Fourier transform of the convolution of two functions is the same as the
pointwise multiplication of the respective Fourier transforms:

F{f ∗ g} = F{f} · F{g}.

What implications does this have for computing the convolution?

(c) Additionally let f and g be continuously differentiable. Show that:

d

dx
(f ∗ g) = df

dx
∗ g =

dg

dx
∗ f.

The results from 2a might be useful.



Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Start MATLAB and visualize the vector fields from exercise 1(c)i and 1(c)ii. The commands
help meshgrid and help quiver can be useful for that. Explain the intuition behind
divergence-free and curl-free vector fields!

2. Download the archive vmcv ex01.zip and unzip it on your home folder. In there should be
a file named coins.png. Load the unzipped image using the following command:

f=double(imread(’coins.png’));

Show the image using MATLAB’s command:

figure; imshow(uint8(f));

3. Let W and H denote respectively the width and height of the input image f .

(a) Compute the gradient ∇f = (∂+x f, ∂
+
y f)

T of the image using the discretization scheme
of forward differences:

(∂+x f)i,j =

{
fi+1,j − fi,j if i < W
0 i =W.

(∂+y f)i,j =

{
fi,j+1 − fi,j if j < H
0 j = H.

Notice that the boundary values of the gradient are set to zero.
(b) Compute the gradient without using any for loops this time. Can you tell the difference?

4. (a) Compute the convolution of the image with a Gaussian kernel. In theory, the Gaussian
distribution is nonzero everywhere, however in practice we restrict ourself to truncated
kernels. Set the radius of the kernel to r = ceil(3× σ). The discrete convolution is given
as:

g(i, j) = (w ∗ f)(i, j) :=
r∑

m=−r

r∑
n=−r

w(m,n) f(i−m, j − n).

The discrete truncated Gaussian kernel can be written as follows:

w(m,n) ∝ exp

(
−m

2 + n2

2σ2

)
In order to stay consistent with the continuous formulation of the Gaussian distribution
make sure to normalize the kernel function such that the following holds:

r∑
m=−r

r∑
n=−r

w(m,n) = 1.

For simplicity you can ignore pixels where the mask goes beyond the edge of the image.
(b) Find out how to obtain the same result as in (a) without using any loops. To this end, make

yourself familiar with the conv2 command.
(c) Now compute the gradient (see Ex. 3) of the image using convolution. Make sure to take

care of the boundary values.

5. Let fσ be the input image convolved with a Gaussian kernel of standard deviation σ. Compute
the magnitude of the Gradient |∇fσ| for different values for σ. What do you observe?


