Variational Methods for Computer Vision: Solution Sheet 3

Part I: Theory

1. (a) Suppose x^{*} is a local but not a global minimizer. Then there exists a $z \in \mathbb{R}^{n}$ with $f(z)<$ $f\left(x^{*}\right)$. Consider the line segment

$$
x_{\lambda}=\lambda z+(1-\lambda) x^{*}, \lambda \in(0,1) .
$$

By convexity we have:
$f\left(x_{\lambda}\right)=f\left(\lambda z+(1-\lambda) x^{*}\right) \leq \lambda f(z)+(1-\lambda) f\left(x^{*}\right)<\lambda f\left(x^{*}\right)+(1-\lambda) f\left(x^{*}\right)=f\left(x^{*}\right)$.
\Rightarrow Any neighbourhood of x^{*} contains a point x_{λ} with $f\left(x_{\lambda}\right)<f\left(x^{*}\right)$, which is a contradiction to the assumption.
(b) Assume that x^{*} is a stationary point but not a global minimizer. Then there is a $z \in \mathbb{R}^{n}$ with $f(z)<f\left(x^{*}\right)$, and

$$
\begin{aligned}
\left\langle\nabla f\left(x^{*}\right), z-x^{*}\right\rangle & =\lim _{\epsilon \rightarrow 0} \frac{1}{\varepsilon}\left(f\left(x^{*}+\varepsilon\left(z-x^{*}\right)\right)-f\left(x^{*}\right)\right) \\
& \leq \lim _{\epsilon \rightarrow 0} \frac{1}{\varepsilon}\left(\varepsilon f(z)+(1-\varepsilon) f\left(x^{*}\right)-f\left(x^{*}\right)\right) \\
& =f(z)-f\left(x^{*}\right)<0 .
\end{aligned}
$$

Thus $\left\langle\nabla f\left(x^{*}\right), z-x^{*}\right\rangle \neq 0 \Rightarrow \nabla f\left(x^{*}\right) \neq 0 \Rightarrow x^{*}$ is not a stationary point.
2. f convex $\Rightarrow($ epi $f)$ convex:

Take arbitrary $(u, a),(v, b) \in \operatorname{epi} f$. Then

$$
f(\lambda u+(1-\lambda) v) \leq \lambda f(u)+(1-\lambda) f(v) \leq \lambda a+(1-\lambda) b .
$$

Thus $(\lambda u+(1-\lambda) v, \lambda a+(1-\lambda) b)=\lambda(u, a)+(1-\lambda)(v, b) \in \operatorname{epi} f$.
(epi f) convex $\Rightarrow f$ convex:
Take arbitrary $x, y \in \mathbb{R}^{n}$ and let $a:=f(x), b:=f(y)$. Then $(x, a),(y, b) \in$ epi f. Since epi f is convex:

$$
\begin{gathered}
(\lambda x+(1-\lambda) y, \lambda a+(1-\lambda) b) \in \text { epi } f, \quad \text { i.e. } \\
f(\lambda x+(1-\lambda) y) \leq \lambda a+(1-\lambda) b=\lambda f(x)+(1-\lambda) f(y) .
\end{gathered}
$$

This is exactly the definition of convexity of f.
3. (a) A direct calculation shows:

$$
\begin{aligned}
h(\lambda x+(1-\lambda) y) & =\alpha f(\lambda x+(1-\lambda) y)+\beta g(\lambda x+(1-\lambda) y) \\
& \leq \alpha \lambda f(x)+\alpha(1-\lambda) f(y)+\beta \lambda g(x)+\beta(1-\lambda) g(y) \\
& =\lambda(\alpha f(x)+\beta g(x))+(1-\lambda)(\alpha f(y)+\beta g(y)) \\
& =\lambda h(x)+(1-\lambda) h(y) .
\end{aligned}
$$

(b) Since $h=\max (f, g)$, we have for each x that $h(x) \geq f(x)$ and $h(x) \geq g(x)$. Thus,

$$
\begin{aligned}
& \lambda h(x)+(1-\lambda) h(y) \geq \lambda f(x)+(1-\lambda) f(y) \geq f(\lambda x+(1-\lambda) y) \quad \text { and } \\
& \lambda h(x)+(1-\lambda) h(y) \geq \lambda g(x)+(1-\lambda) g(y) \geq g(\lambda x+(1-\lambda) y),
\end{aligned}
$$

where the second " \geq " sign is due to convexity of f and g, respectively. Now, since both of these relations hold, we have that
$\lambda h(x)+(1-\lambda) h(y) \geq \max (f(\lambda x+(1-\lambda) y), g(\lambda x+(1-\lambda) y))=h(\lambda+(1-\lambda) y)$.
This is exactly the definition of convexity of h.
Alternative: We see that

$$
\text { epi } \begin{aligned}
f \cap \text { epi } g & =\{(x, a) \mid f(x) \leq a\} \cap\{(x, a) \mid g(x) \leq a\} \\
& =\{(x, a) \mid \max \{f(x), g(x)\} \leq a\}=\mathrm{epi} h
\end{aligned}
$$

Since the intersection of two convex sets is always convex, epi h is a convex set. This implies by Ex. 2 that h is also a convex function.
Now we need to proof that the intersection of two convex sets is convex (always $\lambda \in$ $(0,1))$:

$$
\begin{aligned}
& S_{1}, S_{2} \text { convex } \\
& \Rightarrow\left(\forall x, y \in S_{1}: \lambda x+(1-\lambda) y \in S_{1}\right) \wedge\left(\forall x, y \in S_{2}: \lambda x+(1-\lambda) y \in S_{2}\right) \\
& \Rightarrow\left(x, y \in S_{1} \wedge x, y \in S_{2} \Rightarrow \lambda x+(1-\lambda) y \in S_{1} \wedge \lambda x+(1-\lambda) y \in S_{2}\right) \\
& \Rightarrow \forall x, y \in S_{1} \cap S_{2}: \lambda x+(1-\lambda) y \in S_{1} \cap S_{2} \\
& \Rightarrow S_{1} \cap S_{2} \text { convex. }
\end{aligned}
$$

(c) Counterexample: $h(x)=\min \left\{(x-1)^{2},(x+1)^{2}\right\}$ is clearly not convex: take e.g. $x=1$, $y=-1$ and $\lambda=\frac{1}{2}$, then

$$
h(\lambda x+(1-\lambda) y)=h(0)=1>0=\lambda h(x)+(1-\lambda) h(y) .
$$

4.

$$
\begin{aligned}
h^{\prime \prime}(x) & =f(g(x))^{\prime \prime}=\left(f^{\prime}(g(x)) g^{\prime}(x)\right)^{\prime} \\
& =\underbrace{f^{\prime \prime}(g(x))}_{\geq 0} \underbrace{g^{\prime}(x) g^{\prime}(x)}_{\geq 0}+f^{\prime}(g(x)) \underbrace{g^{\prime \prime}(x)}_{\geq 0}
\end{aligned}
$$

Thus $h^{\prime \prime}(x) \geq 0$ if $f^{\prime}(g(x)) \geq 0$, so f being a convex non-decreasing function is a sufficient condition for the convexity of h.

Part II: Practical Exercises

1. From the lecture, we have the following condition on u :

$$
\begin{gathered}
\frac{\mathrm{d} E_{\lambda}}{\mathrm{d} u_{l}}=\left(u_{l}-f_{l}\right)+\lambda \sum_{\substack{l, j \\
\text { neighbours }}}\left(u_{l}-u_{j}\right)=0 \\
\Rightarrow \quad\left(1+\lambda n_{l}\right) u_{l}-\lambda \sum_{\substack{l, j \\
\text { neighbours }}} u_{j}=f_{l}
\end{gathered}
$$

with n_{i} being the number of neighbours of pixel i. Thus the Gauss-Seidel update step becomes

$$
u_{i}^{(k+1)}=\frac{1}{1+\lambda n_{i}}\left(f_{i}+\lambda \sum_{\substack{j \in \mathcal{N}(i) \\ j<i}} u_{j}^{(k+1)}+\lambda \sum_{\substack{j \in \mathcal{N}(i) \\ j>i}} u_{j}^{(k)}\right)
$$

for the given energy.

