Variational Methods for Computer Vision: Solution Sheet 3

Exercise: November 13, 2019

Part I: Theory

1. (a) Suppose x* is a local but not a global minimizer. Then there exists a z € R"™ with f(z) <
f(z*). Consider the line segment

xx=Xz+ (1 =Nz", A e (0,1).
By convexity we have:
f(@a) = FAz+(1=A)z") S Af(2) + (1= f(@7) < Af(@7) + (1= A f(@") = f(z7).

= Any neighbourhood of z* contains a point x) with f(z,) < f(«*), which is a contra-
diction to the assumption.

(b) Assume that x* is a stationary point but not a global minimizer. Then there is a z € R"
with f(z) < f(z*), and

(Vf(z"),z = z%) = lim 1(f(x* +e(z—a%)) = f(z))

e—0 €

< lim (/) + (1 = )/ (@) — f(2"))
= f(z) - f(z") <O.
Thus (Vf(z*),z — x*) # 0= V f(z*) # 0 = z* is not a stationary point.

2. f convex = (epi f) convex:

Take arbitrary (u, a), (v,b) € epi f. Then
FOwA+ (1= N)v) < Af(u) + (1= N Ff(®) < Aa+ (1—\b.

Thus (Au + (1 — ANv, da+ (1 — A\)b) = Mu,a) + (1 — N)(v,b) € epi f.
(epi f) convex = f convex:

Take arbitrary =,y € R™ and let a := f(x), b := f(y). Then (z,a), (y,b) € epi f. Since epi f
is convex:

A+ (1 =Ny, da+ (1 —A)b) cepi f, ie.
fOz+ (1= XNy) <Aa+ (1 =A)b=Af(z)+ (1 -A)[f(y)
This is exactly the definition of convexity of f.

3. (a) A direct calculation shows:

h(hz + (1= Ny) = af(hz+ (1 = Ny) + Bghz + (1 — N)y)
< alf(z) +a(l =N f(y) + BAg(x) + B(1 — N)g(y)
= Maf(z) + Bg(x)) + (1 = A)(af(y) + Bg(y))
= Ah(z) + (1 — XN)h(y).
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(b) Since h = max(f, g), we have for each = that h(x) > f(z) and h(z) > g(z). Thus,

A(x) + (1= Nh(y) 2 AMf(z) + (1 =N f(y) > f(Az+ (1 - N)y) and
Ah(z) + (1= MNh(y) > Ag(z) + (1 = Ng(y) 2 g(Az + (1 = Ny) ,

where the second “>” sign is due to convexity of f and g, respectively. Now, since both
of these relations hold, we have that

A(2)+(1=A)h(y) = max (f Az + (1 = N)y), g Az + (1 = A)y)) =h(A+ (1= A)y).

This is exactly the definition of convexity of h.
Alternative: We see that

epi f Nepi g = {(z,a) | f(x) < a} N {(z,a) | g(z) < a}
= {(x.0) | max{f(2),g(x)} < a} = epi h

Since the intersection of two convex sets is always convex, epi h is a convex set. This
implies by Ex. 2 that & is also a convex function.

Now we need to proof that the intersection of two convex sets is convex (always A €

(0,1)):

S1, 52 convex

= Ve,ye Si: e+ (1 —-NyeSi)ANVe,ye Sa: Az + (1 — Ny € .52)
= (z,yeSiAzyeSe=dx+(1-NyeSi Az + (1— Ny € )
=Vr,y € S1NSy: Az + (1 — ANy e€S1NSy

= 51 NSy convex.

(c) Counterexample: h(z) = min{(z — 1), (x + 1)?} is clearly not convex: take e.g. x = 1,
y=—land \ = %, then

RO + (1= N)y) = h(0) =1 > 0 = M(z) + (1 — Ah(y) .

W' (@) = [(g(@)" = (I'(g(a))g (@)
= ["(9(2)) ¢ ()9 (@) +£ (9(x)) ¢ (2)
20 20 37

Thus A" (z) > 0if f'(g(z)) > 0, so f being a convex non-decreasing function is a sufficient
condition for the convexity of h.



Part I1: Practical Exercises

1. From the lecture, we have the following condition on u:

dEy
du = (w—fi) + A Z (wp —u;)=0

nelghbours
l?j
neighbours

with n; being the number of neighbours of pixel i. Thus the Gauss-Seidel update step becomes

(k+1) 1 4 (k+1)

e T2TD DAL EE S
JEN (i) JEN(3)
1<t j>i

for the given energy.



