Variational Methods for Computer Vision: Solution Sheet 7

Exercise: December 11, 2019

Part I: Theory

1. (a) The line integral of a vector field V along a curve $\gamma(t)$ is defined as

$$
\int_{\gamma} V(s) \mathrm{d} \vec{s}=\int_{0}^{T}\langle V(\gamma(t)), \dot{\gamma}(t)\rangle \mathrm{d} t
$$

so we have to integrate over the scalar product of V with the tangent vector to the curve at each point of the curve. For a square, the tangent vectors are $(0, \pm 1)$ and $(\pm 1,0)$.

We start by evaluating the left hand side of the equation:

$$
\begin{aligned}
\int_{Q} \operatorname{curl} V \mathrm{~d} x \mathrm{~d} y & =\int_{Q} v_{x}(x, y)-u_{y}(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{1} \int_{0}^{1} v_{x}(x, y) \mathrm{d} x \mathrm{~d} y-\int_{0}^{1} \int_{0}^{1} u_{y}(x, y) \mathrm{d} y \mathrm{~d} x \\
& =\left.\int_{0}^{1} v(x, y)\right|_{x=0} ^{x=1} \mathrm{~d} y-\left.\int_{0}^{1} u(x, y)\right|_{y=0} ^{y=1} \mathrm{~d} x \\
& =\int_{0}^{1} v(1, y) \mathrm{d} y-\int_{0}^{1} v(0, y) \mathrm{d} y-\underbrace{\left.\int_{0}^{1} u(x, 1) \mathrm{d} x\right) d \vec{s}}_{\int_{a}}+\underbrace{\int_{0}^{1} u(x, 0) \mathrm{d} x}_{\int_{c} V(s) d \vec{s}} \\
& =\underbrace{\int_{0}^{1} v(1, y) \mathrm{d} y}_{\int_{b} V V(s) d \vec{s}}+\underbrace{\int_{1}^{0} v(0, y) \mathrm{d} y}_{\int_{d} V(s) d \vec{s}}+\int_{\partial Q}^{\int_{1}^{0} u(x, 1) \mathrm{d} x}+\int_{0}^{1} u(x, 0) \mathrm{d} x \\
& =\oint_{\partial V(s) \mathrm{d} \vec{s} .}
\end{aligned}
$$

(b) To show the principle, we first join two squared of same side length that touch in one side:

$$
\begin{aligned}
& \int_{Q_{1}} v_{x}(x, y)-u_{y}(x, y) \mathrm{d} x \mathrm{~d} y+\int_{Q_{2}} v_{x}(x, y)-u_{y}(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{a} V(s) \mathrm{d} \vec{s}+\int_{b} V(s) \mathrm{d} \vec{s}+\int_{c} V(s) \mathrm{d} \vec{s}+\int_{d} V(s) \mathrm{d} \vec{s} \\
& -\int_{a} V(s) \mathrm{d} \vec{s}+\int_{g} V(s) \mathrm{d} \vec{s}+\int_{f} V(s) \mathrm{d} \vec{s}+\int_{e} V(s) \mathrm{d} \vec{s} \\
& =\int_{b} V(s) \mathrm{d} \vec{s}+\int_{c} V(s) \mathrm{d} \vec{s}+\int_{d} V(s) \mathrm{d} \vec{s}+\int_{g} V(s) \mathrm{d} \vec{s}+\int_{f} V(s) \mathrm{d} \vec{s}+\int_{e} V(s) \mathrm{d} \vec{s} \\
& =\oint_{\partial\left(Q_{1} \cup Q_{2}\right)} V(s) \mathrm{d} \vec{s} .
\end{aligned}
$$

In the more general case, we can use the same argument: Whenever we add a new square Q_{n} to the set $\Omega_{n-1}=\dot{U}_{i=1, \ldots, n-1} Q_{i}$, we can call the part of the boundary where the two sets touch a. Since both curves are integrated counter-clockwise, Ω_{n-1} contributes $\int_{a} V(s) \mathrm{d} \vec{s}$ to the total integral, and Q_{n} contributes $-\int_{a} V(s) \mathrm{d} \vec{s}$. Thus, the two contributions always cancel each other out, leading to the desired result. All other parts of the boundaries of Ω_{n-1} and Q_{n} combine to form the boundary of Ω_{n}. Note that its not necessary that a is exactly one whole side of the square Q_{n} - it can also be more sides or only part of one side.
2. Consider the energies of regions Ω_{1} and Ω_{2} before and after the merge operation:

$$
\begin{aligned}
& E_{\text {before }}=\int_{\Omega_{1}}\left(I(x)-u_{1}\right)^{2} \mathrm{~d} x+\int_{\Omega_{2}}\left(I(x)-u_{2}\right)^{2} \mathrm{~d} x+\nu\left|C_{\text {before }}\right| \\
& E_{\text {after }}=\int_{\Omega_{1} \cup \Omega_{2}}\left(I(x)-u_{\text {merged }}\right)^{2} \mathrm{~d} x+\nu\left|C_{\text {after }}\right|
\end{aligned}
$$

Here we assume that u_{1}, u_{2} and $u_{\text {merged }}$ optimize the energy given the respective region boundaries, i.e. they are the average intensity of the respective region (shown in the lecture). From this it follows that

$$
\begin{equation*}
u_{\mathrm{merged}}=\frac{u_{1} A_{1}+u_{2} A_{2}}{A_{1}+A_{2}} \tag{1}
\end{equation*}
$$

which means $u_{\text {merged }}$ is a weighted average of u_{1} and u_{2}.
Furthermore we are going to use the fact that for the average \bar{f} of a function f on a domain Ω,

$$
\begin{align*}
& \int_{\Omega}(f(x)-\bar{f})^{2} \mathrm{~d} x=\int_{\Omega} f(x)^{2} \mathrm{~d} x-2 \bar{f} \int_{\Omega} f(x) \mathrm{d} x+\bar{f}^{2} \int_{\Omega} \mathrm{d} x \\
& =\int_{\Omega} f(x)^{2} \mathrm{~d} x-2 \bar{f}|\Omega| \bar{f}+\bar{f}^{2}|\Omega|=\int_{\Omega} f(x)^{2} \mathrm{~d} x-|\Omega| \bar{f}^{2} \tag{2}
\end{align*}
$$

which is true in particular for $f=I, \bar{f}=u_{i}$ and $\Omega=\Omega_{i}$.
Since merging two regions always results in the contour C getting shorter, we can define a change $\delta C>0$ in contour length as

$$
\delta C=\left|C_{\text {after }}\right|-\left|C_{\text {before }}\right|
$$

For the change in energy δE, we adopt the more common definition of substracting the 'before'value from the 'after'-value:

$$
\begin{align*}
\delta E & =E_{\text {after }}-E_{\text {before }} \\
& =\int_{\Omega_{1} \cup \Omega_{2}}\left(I(x)-u_{\text {merged }}\right)^{2} \mathrm{~d} x-\int_{\Omega_{1}}\left(I(x)-u_{1}\right)^{2} \mathrm{~d} x-\int_{\Omega_{2}}\left(I(x)-u_{2}\right)^{2} \mathrm{~d} x-\nu \delta C \\
& =\int_{\Omega_{1} \cup \Omega_{2}} I(x)^{2} \mathrm{~d} x-\left(A_{1}+A_{2}\right) u_{\text {merged }}^{2} \tag{2}\\
& -\int_{\Omega_{1}} I(x)^{2} \mathrm{~d} x+A_{1} u_{1}^{2}-\int_{\Omega_{2}} I(x)^{2} \mathrm{~d} x+A_{2} u_{2}^{2}-\nu \delta C \\
& =A_{1} u_{1}^{2}+A_{2} u_{2}^{2}-\left(A_{1}+A_{2}\right)\left(\frac{u_{1} A_{1}+u_{2} A_{2}}{A_{1}+A_{2}}\right)^{2}-\nu \delta C \tag{1}\\
& =A_{1} u_{1}^{2}+A_{2} u_{2}^{2}-\frac{\left(u_{1} A_{1}+u_{2} A_{2}\right)^{2}}{A_{1}+A_{2}}-\nu \delta C \\
& =A_{1} u_{1}^{2}+A_{2} u_{2}^{2}-\frac{\left(u_{1} A_{1}\right)^{2}+2 u_{1} A_{1} u_{2} A_{2}+\left(u_{2} A_{2}\right)^{2}}{A_{1}+A_{2}}-\nu \delta C \\
& =\frac{\left(A_{1}+A_{2}\right) A_{1} u_{1}^{2}+\left(A_{1}+A_{2}\right) A_{2} u_{2}^{2}-\left(u_{1} A_{1}\right)^{2}-2 u_{1} A_{1} u_{2} A_{2}-\left(u_{2} A_{2}\right)^{2}}{A_{1}+A_{2}}-\nu \delta C \\
& =\frac{A_{1} A_{2} u_{1}^{2}+A_{1} A_{2} u_{2}^{2}-2 A_{1} A_{2} u_{1} u_{2}}{A_{1}+A_{2}}-\nu \delta C \\
& =\frac{A_{1} A_{2}}{A_{1}+A_{2}}\left(u_{1}-u_{2}\right)^{2}-\nu \delta C .
\end{align*}
$$

