
Variational Methods for Computer Vision: Solution Sheet 8

Exercise: December 18, 2019

Part I: Theory

1. Recall from the lecture, that the Euler-Lagrange equation for the two-region Mumford-Shah
functional for a curve C : [0, 1]→ Ω ⊂ R2 and image I : Ω→ R is given by

dE

dC
=
(
(I − uint)

2 − (I − uext)
2 + νκ

)
nC . (1)

Here, uint and uext are the average intensities inside and outside the curve C, i.e.,

uint =

∫
int(C) I(x)dx∫

int(C) dx
, uext =

∫
ext(C) I(x)dx∫

ext(C) dx
. (2)

We will consider the curve evolution

∂C

∂t
= −dE

dC
=
(
−(I − uint)

2 + (I − uext)
2 − νκ

)
nC . (3)

Intuitively, we evolve the curve along the normal vector nC depending on the sign of the term
in the brackets.

(a) The curvature κ of a circle with radius r is κ = 1
r . We can use this fact in calculating the

Euler-Lagrange equations for the 2 different cases.

Case r > 1:

uext = 0, uint =
π

πr2
=

1

r2
.

This leads to following inner term:

(I − uext)
2 − (I − uint)

2 − νκ = (0− 0)2 −
(

0− 1

r2

)2

− ν

r
= − 1

r4
− ν

r
.

Case r ≤ 1:

uext =
π − πr2

100− πr2
, uint = 1.

A short computation shows:

(I − uext)
2 − (I − uint)

2 − νκ =

(
1− π − πr2

100− πr2

)2

− 0− ν

r

=

(
100− π

100− πr2

)2

− ν

r
.
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(b) We see that the limits differ,

lim
r↘1
− 1

r4
− ν

r
= −1− ν,

lim
r↗1

(
100− π

100− πr2

)2

− ν

r
=

(
100− π
100− π

)2

− ν = 1− ν,

hence, the functional derivative at r = 1 is not continuous.
This shows that the original energy E(C) is not differentiable, which can lead to conver-
gence problems when using gradient descent-type algorithms as they technically require
differentiability of the energy.
ν ≤ 1 is a good choice because it ensures that the curve evolves in the right direction for
both cases r > 1 and r ≤ 1. ν = 0 can be considered optimal in some sense, because
that minimizes the difference in the magnitude of the gradient direction for the two cases
r > 1 and r ≤ 1 (they are both 1).

2. Let us first consider the energy as a functional of u:

E(u) =

∫
Ω
L(u,∇u)dx.

Using the result from the lecture for energies of this form, the optimality condition is

∂L
∂u
− div

∂L
∂∇u

= 2(u− I)− 2λ div(w2∇u) = 0 in Ω,〈
∂L
∂∇u

, n

〉
=
〈
2λw2∇u, n

〉
= 2λw2〈∇u, n〉 = 0 on ∂Ω.

As usual n is the normal on the boundary. Notice that the energy is quadratic in both u and∇u,
which means that we have a linear Euler-Lagrange equation. For image denoising von Neumann
boundary conditions are appropriate, i.e. 〈∇u, n〉 = 0. This implies that the boundary term of
the Euler-Lagrange equation is fulfilled.

Next, we consider the energy as a functional of w:

E(w) =

∫
Ω
L(w,∇w)dx,

and compute the optimiality condition analogously as

∂L
∂w
− div

∂L
∂∇w

= 2λ|∇u|2w +
ν

2ε
(w − 1)− 2νε∆w = 0 in Ω,〈

∂L
∂∇u

, n

〉
= 〈2νε∇w, n〉 = 2νε〈∇w, n〉 = 0 on ∂Ω.

Again, this equation is linear in w. The boundary term is fulfilled with von Neumann boundary
conditions (〈∇w, n〉 = 0) and this choice also seems appropriate for the application (imagine
the border indicater function w to extend with constant value at the border in normal direction).

In the implementation we alternatingly optimize u and w. In each step we can directly compute
the optimal u and w by solving a linear equation system.
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