Variational Methods for Computer Vision: Solution Sheet 8

Exercise: December 18, 2019

Part I: Theory

1. Recall from the lecture, that the Euler-Lagrange equation for the two-region Mumford-Shah
functional for a curve C : [0,1] — Q C R? and image I : 2 — R is given by
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Here, uiy; and uey are the average intensities inside and outside the curve C, i.e.,
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We will consider the curve evolution
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Intuitively, we evolve the curve along the normal vector nc depending on the sign of the term
in the brackets.

(a) The curvature x of a circle with radius r is Kk = % We can use this fact in calculating the
Euler-Lagrange equations for the 2 different cases.

Caser > 1:
T
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This leads to following inner term:
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A short computation shows:
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(b) We see that the limits differ,
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hence, the functional derivative at » = 1 is not continuous.

This shows that the original energy E(C) is not differentiable, which can lead to conver-
gence problems when using gradient descent-type algorithms as they technically require
differentiability of the energy.

v < 1is a good choice because it ensures that the curve evolves in the right direction for
both cases r > 1 and » < 1. v = 0 can be considered optimal in some sense, because
that minimizes the difference in the magnitude of the gradient direction for the two cases
r > 1land r <1 (they are both 1).

2. Let us first consider the energy as a functional of u:

E(u)z/ﬁﬁ(u,Vu)d:c.

Using the result from the lecture for energies of this form, the optimality condition is
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As usual n is the normal on the boundary. Notice that the energy is quadratic in both v and Vu,
which means that we have a linear Euler-Lagrange equation. For image denoising von Neumann
boundary conditions are appropriate, i.e. (Vu,n) = 0. This implies that the boundary term of
the Euler-Lagrange equation is fulfilled.

Next, we consider the energy as a functional of w:
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and compute the optimiality condition analogously as
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Again, this equation is linear in w. The boundary term is fulfilled with von Neumann boundary
conditions ((Vw,n) = 0) and this choice also seems appropriate for the application (imagine
the border indicater function w to extend with constant value at the border in normal direction).

In the implementation we alternatingly optimize » and w. In each step we can directly compute
the optimal u and w by solving a linear equation system.



