Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set Convex Function Existence of Minimizer Subdifferential Convex Conjugate Duality Theory Proximal Operator

Tao Wu Zhenzhang Ye

Computer Vision Group Department of Informatics TU Munich

Last updated: 21.10.2019

Chapter 1 Convex Analysis

Convex Optimization for Machine Learning & Computer Vision WS 2019/20

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set Convex Function Existence of Minimizer Subdifferential Convex Conjugate Duality Theory Proximal Operator

Convex Set

Convex Optimization

Notations

- E is a *Euclidean space* (i.e., finite dimensional inner product space), equipped with
 - Inner product (·, ·), e.g., (u, v) = u^T v if E = ℝⁿ;
 Norm ||·|| = √(·, ·) satisfying polarization identity:

$$2\|u\|^{2} + 2\|v\|^{2} = \|u + v\|^{2} + \|u - v\|^{2}.$$

- C is a closed, convex subset of \mathbb{E} .
- *J* is a convex *objective* function.

Tao Wu Zhenzhang Ye

Convex Optimization

Notations

• E is a *Euclidean space* (i.e., finite dimensional inner product space), equipped with

Inner product (·, ·), e.g., (u, v) = u^T v if E = ℝⁿ;
 Norm ||·|| = √(·, ·) satisfying polarization identity:

$$2||u||^{2} + 2||v||^{2} = ||u + v||^{2} + ||u - v||^{2}.$$

- C is a closed, convex subset of \mathbb{E} .
- *J* is a convex *objective* function.

Convex optimization

minimize J(u) over $u \in C$.

First questions:

- What is a convex set?
- What is a convex function?

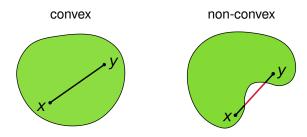
Tao Wu Zhenzhang Ye

Convex set

Definition

A set C is said to be **convex** if

$$\alpha u + (1 - \alpha)v \in C, \quad \forall u, v \in C, \forall \alpha \in [0, 1].$$



Convex Analysis

Tao Wu Zhenzhang Ye

Recall basic concepts in analysis

Definition

- A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. B_ε(u) ⊂ C, where B_ε(u) := {v ∈ E : ||v − u|| < ε}.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{E}$ is

$$\mathsf{cl} \ C = \{ u \in \mathbb{E} : \exists \{ u^k \} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u \}.$$

• The interior of a set $\mathcal{C} \subset \mathbb{E}$ is

int
$$C = \{ u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C \}.$$

Convex Analysis

Tao Wu Zhenzhang Ye

Recall basic concepts in analysis

Definition

- A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. B_ε(u) ⊂ C, where B_ε(u) := {v ∈ E : ||v − u|| < ε}.
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{E}$ is

$$cl C = \{u \in \mathbb{E} : \exists \{u^k\} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u\}.$$

• The interior of a set $\mathcal{C} \subset \mathbb{E}$ is

int $C = \{u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C\}.$

• The relative interior of a set $C \subset \mathbb{E}$ is

rint $C = \{ u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \cap \text{aff } C \subset C \},\$

with aff C the affine hull of C. If C is a convex set, then

rint
$$C = \{u \in C : \forall v \in C, \exists \alpha > 1 \text{ s.t. } v + \alpha(u - v) \in C\}.$$

Convex Analysis

Tao Wu Zhenzhang Ye

Basic properties

The following operations preserve the convexity:

- Intersection: $C_1 \cap C_2$.
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}.$
- Closure: cl C.
- Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex Analysis

Tao Wu Zhenzhang Ye

Basic properties

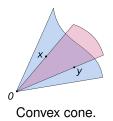
The following operations preserve the convexity:

- Intersection: $C_1 \cap C_2$.
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}.$
- Closure: cl C.
- Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex cone

C is a **cone** if $C = \alpha C$ for any $\alpha > 0$. *C* is a **convex cone** if *C* is a cone and is convex as well.



Convex Analysis

Tao Wu Zhenzhang Ye

Separation of convex sets

Theorem (separation of convex sets)

Let C_1 , C_2 be nonempty convex subsets of \mathbb{E} .

1 Assume C_1 is closed and $C_2 = \{w\} \subset \mathbb{E} \setminus C_1$. Then $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R} \text{ s.t.}$

 $\langle \mathbf{v}, \mathbf{w} \rangle > \alpha \ge \langle \mathbf{v}, \mathbf{u} \rangle, \quad \forall \mathbf{u} \in C_1.$

2 Assume C_1 is open and $C_2 = \{w\} \subset \mathbb{E} \setminus C_1$. Then $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$\langle \mathbf{v}, \mathbf{w} \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u} \rangle, \quad \forall \mathbf{u} \in \mathbf{C}_1.$$

3 Assume C₁ ∩ C₂ = Ø and C₁ is open. Then ∃v ∈ E, v ≠ 0, α ∈ R s.t. ⟨v, u¹⟩ ≥ α ≥ ⟨v, u²⟩, ∀u¹ ∈ C₁, u² ∈ C₂.
4 Assume Ø ≠ int C₁ ⊂ E\C₂. Then ∃v ∈ E, v ≠ 0, α ∈ R s.t. ⟨v, u¹⟩ ≥ α ≥ ⟨v, u²⟩, ∀u¹ ∈ C₁, u² ∈ C₂.

Convex Analysis

Tao Wu Zhenzhang Ye

