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Convex Set
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Convex Optimization

Notations

• E is a Euclidean space (i.e., finite dimensional inner
product space), equipped with

1 Inner product 〈·, ·〉, e.g., 〈u, v〉 = u>v if E = Rn;
2 Norm ‖·‖ =

√
〈·, ·〉 satisfying polarization identity:

2‖u‖2 + 2‖v‖2 = ‖u + v‖2 + ‖u − v‖2.

• C is a closed, convex subset of E.
• J is a convex objective function.

Convex optimization

minimize J(u) over u ∈ C.

First questions:
• What is a convex set?
• What is a convex function?
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Convex set

Definition

A set C is said to be convex if

αu + (1− α)v ∈ C, ∀u, v ∈ C, ∀α ∈ [0,1].

convex non-convex
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Recall basic concepts in analysis

Definition

• A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. Bε(u) ⊂ C,
where Bε(u) := {v ∈ E : ‖v − u‖ < ε}.

• A set C ⊂ E is closed if its complement E\C is open.
• The closure of a set C ⊂ E is

cl C = {u ∈ E : ∃{uk} ⊂ C s.t. lim
k→∞

uk = u}.

• The interior of a set C ⊂ E is

int C = {u ∈ C : ∃ε > 0 s.t. Bε(u) ⊂ C}.

• The relative interior of a set C ⊂ E is

rint C = {u ∈ C : ∃ε > 0 s.t. Bε(u) ∩ aff C ⊂ C},

with aff C the affine hull of C. If C is a convex set, then

rint C = {u ∈ C : ∀v ∈ C,∃α > 1 s.t. v + α(u − v) ∈ C}.
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Basic properties
The following operations preserve the convexity:
• Intersection: C1 ∩ C2.
• Summation: C1 + C2 := {u1 + u2 : u1 ∈ C1,u2 ∈ C2}.
• Closure: cl C.
• Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex cone

C is a cone if C = αC for any α > 0.
C is a convex cone if C is a cone and is convex as well.

Convex cone.
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Separation of convex sets

Theorem (separation of convex sets)

Let C1, C2 be nonempty convex subsets of E.
1 Assume C1 is closed and C2 = {w} ⊂ E\C1. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.

〈v ,w〉 > α ≥ 〈v ,u〉 , ∀u ∈ C1.

2 Assume C1 is open and C2 = {w} ⊂ E\C1. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.

〈v ,w〉 ≥ α ≥ 〈v ,u〉 , ∀u ∈ C1.

3 Assume C1 ∩ C2 = ∅ and C1 is open. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.〈

v ,u1〉 ≥ α ≥ 〈
v ,u2〉 , ∀u1 ∈ C1, u2 ∈ C2.

4 Assume ∅ 6= int C1 ⊂ E\C2. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.〈

v ,u1〉 ≥ α ≥ 〈
v ,u2〉 , ∀u1 ∈ C1, u2 ∈ C2.


