Chapter 1 Convex Analysis

Convex Optimization for Machine Learning \& Computer Vision WS 2019/20

Convex Set
Convex Function
Existence of Minimizer
Subdifferential
Convex Conjugate
Duality Theory
Proximal Operator

> Tao Wu
> Zhenzhang Ye
> Computer Vision Group Department of Informatics

> TU Munich

Convex Set

Convex Set
Convex Function
Existence of Minimizer
Subdifferential
Convex Conjugate
Duality Theory
Proximal Operator

Convex Optimization

Notations

- \mathbb{E} is a Euclidean space (i.e., finite dimensional inner product space), equipped with
(1) Inner product $\langle\cdot, \cdot\rangle$, e.g., $\langle u, v\rangle=u^{\top} v$ if $\mathbb{E}=\mathbb{R}^{n}$;
(2) Norm $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ satisfying polarization identity:

$$
2\|u\|^{2}+2\|v\|^{2}=\|u+v\|^{2}+\|u-v\|^{2}
$$

- C is a closed, convex subset of \mathbb{E}.
- J is a convex objective function.

Convex Optimization

Notations

- \mathbb{E} is a Euclidean space (i.e., finite dimensional inner product space), equipped with
(1) Inner product $\langle\cdot, \cdot\rangle$, e.g., $\langle u, v\rangle=u^{\top} v$ if $\mathbb{E}=\mathbb{R}^{n}$;
(2) Norm $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$ satisfying polarization identity:

$$
2\|u\|^{2}+2\|v\|^{2}=\|u+v\|^{2}+\|u-v\|^{2} .
$$

- C is a closed, convex subset of \mathbb{E}.
- J is a convex objective function.

Convex optimization

$$
\text { minimize } J(u) \quad \text { over } u \in C
$$

First questions:

- What is a convex set?
- What is a convex function?

Convex set

Definition

A set C is said to be convex if

$$
\alpha u+(1-\alpha) v \in C, \quad \forall u, v \in C, \forall \alpha \in[0,1] .
$$

convex

non-convex

Convex Set
Convex Function
Existence of Minimizer

Subdifferential

Convex Conjugate
Duality Theory
Proximal Operator

Recall basic concepts in analysis

Definition

- A set $C \subset \mathbb{E}$ is open if $\forall u \in C, \exists \epsilon>0$ s.t. $B_{\epsilon}(u) \subset C$, where $B_{\epsilon}(u):=\{v \in \mathbb{E}:\|v-u\|<\epsilon\}$.
- A set $C \subset \mathbb{E}$ is closed if its complement $\mathbb{E} \backslash C$ is open.
- The closure of a set $C \subset \mathbb{E}$ is

$$
\operatorname{cl} C=\left\{u \in \mathbb{E}: \exists\left\{u^{k}\right\} \subset C \text { s.t. } \lim _{k \rightarrow \infty} u^{k}=u\right\} .
$$

- The interior of a set $C \subset \mathbb{E}$ is

$$
\operatorname{int} C=\left\{u \in C: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(u) \subset C\right\} .
$$

Recall basic concepts in analysis

Definition

- A set $C \subset \mathbb{E}$ is open if $\forall u \in C, \exists \epsilon>0$ s.t. $B_{\epsilon}(u) \subset C$, where $B_{\epsilon}(u):=\{v \in \mathbb{E}:\|v-u\|<\epsilon\}$.
- A set $C \subset \mathbb{E}$ is closed if its complement $\mathbb{E} \backslash C$ is open.
- The closure of a set $C \subset \mathbb{E}$ is

$$
\text { cl } C=\left\{u \in \mathbb{E}: \exists\left\{u^{k}\right\} \subset C \text { s.t. } \lim _{k \rightarrow \infty} u^{k}=u\right\} .
$$

- The interior of a set $C \subset \mathbb{E}$ is

$$
\operatorname{int} C=\left\{u \in C: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(u) \subset C\right\} .
$$

- The relative interior of a set $C \subset \mathbb{E}$ is

$$
\operatorname{rint} C=\left\{u \in C: \exists \epsilon>0 \text { s.t. } B_{\epsilon}(u) \cap \operatorname{aff} C \subset C\right\}
$$

with aff C the affine hull of C. If C is a convex set, then

$$
\operatorname{rint} C=\{u \in C: \forall v \in C, \exists \alpha>1 \text { s.t. } v+\alpha(u-v) \in C\} .
$$

Basic properties

The following operations preserve the convexity:

- Intersection: $C_{1} \cap C_{2}$.
- Summation: $C_{1}+C_{2}:=\left\{u^{1}+u^{2}: u^{1} \in C_{1}, u^{2} \in C_{2}\right\}$.
- Closure: cl C.
- Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Basic properties

The following operations preserve the convexity:

- Intersection: $C_{1} \cap C_{2}$.
- Summation: $C_{1}+C_{2}:=\left\{u^{1}+u^{2}: u^{1} \in C_{1}, u^{2} \in C_{2}\right\}$.
- Closure: cl C.
- Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex cone

\boldsymbol{C} is a cone if $\boldsymbol{C}=\alpha \boldsymbol{C}$ for any $\alpha>0$.
C is a convex cone if C is a cone and is convex as well.

Convex cone.

Separation of convex sets

Theorem (separation of convex sets)

Let C_{1}, C_{2} be nonempty convex subsets of \mathbb{E}.
(1) Assume C_{1} is closed and $C_{2}=\{w\} \subset \mathbb{E} \backslash C_{1}$. Then $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle>\alpha \geq\langle\boldsymbol{v}, u\rangle, \quad \forall u \in C_{1} .
$$

(2) Assume C_{1} is open and $C_{2}=\{w\} \subset \mathbb{E} \backslash C_{1}$. Then $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle \geq \alpha \geq\langle\boldsymbol{v}, \boldsymbol{u}\rangle, \quad \forall u \in C_{1} .
$$

(3) Assume $C_{1} \cap C_{2}=\emptyset$ and C_{1} is open. Then $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$
\left\langle v, u^{1}\right\rangle \geq \alpha \geq\left\langle v, u^{2}\right\rangle, \quad \forall u^{1} \in C_{1}, u^{2} \in C_{2}
$$

(4) Assume $\emptyset \neq \operatorname{int} C_{1} \subset \mathbb{E} \backslash C_{2}$. Then
$\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R}$ s.t.

$$
\left\langle v, u^{1}\right\rangle \geq \alpha \geq\left\langle v, u^{2}\right\rangle, \quad \forall u^{1} \in C_{1}, u^{2} \in C_{2}
$$

