Chapter 1 Convex Analysis

Convex Optimization for Machine Learning & Computer Vision WS 2019/20

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Tao Wu Zhenzhang Ye

Computer Vision Group Department of Informatics TU Munich

Last updated: 28.10.2019

Convex Set

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Notations

- E is a Euclidean space (i.e., finite dimensional inner product space), equipped with
 - 1 Inner product $\langle \cdot, \cdot \rangle$, e.g., $\langle u, v \rangle = u^{\top} v$ if $\mathbb{E} = \mathbb{R}^n$;
 - 2 Norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ satisfying polarization identity:

$$2||u||^2 + 2||v||^2 = ||u + v||^2 + ||u - v||^2.$$

- C is a closed, convex subset of \mathbb{E} .
- J is a convex objective function.

Convex Optimization

Notations

- E is a Euclidean space (i.e., finite dimensional inner product space), equipped with
 - 1 Inner product $\langle \cdot, \cdot \rangle$, e.g., $\langle u, v \rangle = u^{\top} v$ if $\mathbb{E} = \mathbb{R}^n$;
 - 2 Norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$ satisfying polarization identity:

$$2||u||^2 + 2||v||^2 = ||u + v||^2 + ||u - v||^2.$$

- C is a closed, convex subset of \mathbb{E} .
- J is a convex objective function.

Convex optimization

minimize J(u) over $u \in C$.

First questions:

- What is a convex set?
- What is a convex function?

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

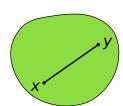
Convex set

Definition

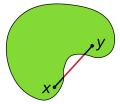
A set C is said to be **convex** if

$$\alpha u + (1 - \alpha)v \in C$$
, $\forall u, v \in C$, $\forall \alpha \in [0, 1]$.

convex



non-convex



Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

- A set $C \subset \mathbb{E}$ is open if $\forall u \in C, \exists \epsilon > 0$ s.t. $B_{\epsilon}(u) \subset C$, where $B_{\epsilon}(u) := \{v \in \mathbb{E} : ||v - u|| < \epsilon\}.$
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{R}$ is

$$\operatorname{cl} C = \{u \in \mathbb{E} : \exists \{u^k\} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u\}.$$

• The **interior** of a set $C \subset \mathbb{E}$ is

int
$$C = \{u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C\}.$$

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate **Duality Theory**

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate **Duality Theory**

- A set $C \subset \mathbb{E}$ is open if $\forall u \in C, \exists \epsilon > 0$ s.t. $B_{\epsilon}(u) \subset C$, where $B_{\epsilon}(u) := \{v \in \mathbb{E} : ||v - u|| < \epsilon\}.$
- A set $C \subset \mathbb{E}$ is **closed** if its complement $\mathbb{E} \setminus C$ is open.
- The **closure** of a set $C \subset \mathbb{R}$ is

$$\operatorname{cl} C = \{u \in \mathbb{E} : \exists \{u^k\} \subset C \text{ s.t. } \lim_{k \to \infty} u^k = u\}.$$

• The **interior** of a set $C \subset \mathbb{E}$ is

int
$$C = \{u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \subset C\}.$$

• The **relative interior** of a set $C \subset \mathbb{E}$ is

rint
$$C = \{u \in C : \exists \epsilon > 0 \text{ s.t. } B_{\epsilon}(u) \cap \text{aff } C \subset C\},$$

with aff C the affine hull of C. If C is a convex set, then

rint
$$C = \{u \in C : \forall v \in C, \exists \alpha > 1 \text{ s.t. } v + \alpha(u - v) \in C\}.$$

Basic properties

The following operations preserve the convexity:

- Intersection: $C_1 \cap C_2$.
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}.$
- Closure: cl C.
- Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Basic properties

The following operations preserve the convexity:

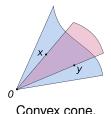
- Intersection: $C_1 \cap C_2$.
- Summation: $C_1 + C_2 := \{u^1 + u^2 : u^1 \in C_1, u^2 \in C_2\}.$
- Closure: cl C.
- Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex cone

C is a **cone** if $C = \alpha C$ for any $\alpha > 0$.

C is a **convex cone** if C is a cone and is convex as well.



Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Theorem (separation of convex sets)

Let C_1 , C_2 be nonempty convex subsets of \mathbb{E} .

1 Assume C_1 is closed and $C_2 = \{w\} \subset \mathbb{E} \setminus C_1$. Then $\exists v \in \mathbb{E}, v \neq 0, \alpha \in \mathbb{R} \text{ s.t.}$

$$\langle \mathbf{v}, \mathbf{w} \rangle > \alpha \geq \langle \mathbf{v}, \mathbf{u} \rangle, \quad \forall \mathbf{u} \in \mathbf{C}_1.$$

2 Assume C_1 is open and $C_2 = \{w\} \subset \mathbb{E} \setminus C_1$. Then $\exists v \in \mathbb{E}, \ v \neq 0, \ \alpha \in \mathbb{R} \text{ s.t.}$

$$\langle \mathbf{v}, \mathbf{w} \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u} \rangle, \quad \forall \mathbf{u} \in \mathbf{C}_1.$$

3 Assume $C_1 \cap C_2 = \emptyset$ and C_1 is open. Then $\exists v \in \mathbb{E}, \ v \neq 0, \ \alpha \in \mathbb{R} \text{ s.t.}$

$$\langle v, u^1 \rangle \ge \alpha \ge \langle v, u^2 \rangle, \quad \forall u^1 \in C_1, \ u^2 \in C_2.$$

4 Assume $\emptyset \neq \text{int } C_1 \subset \mathbb{E} \backslash C_2$. Then $\exists v \in \mathbb{E}, \ v \neq 0, \ \alpha \in \mathbb{R} \text{ s.t.}$

$$\langle \mathbf{v}, \mathbf{u}^1 \rangle \geq \alpha \geq \langle \mathbf{v}, \mathbf{u}^2 \rangle, \quad \forall \mathbf{u}^1 \in C_1, \ \mathbf{u}^2 \in C_2.$$

Convex Function

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

• An extended real-valued function J maps from \mathbb{E} to $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$.

• The **domain** of $J: \mathbb{E} \to \overline{\mathbb{R}}$ is

$$dom J = \{u \in \mathbb{E} : J(u) < \infty\}.$$

• The function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is **proper** if dom $J \neq \emptyset$.

Definition

We say $J: \mathbb{E} \to \overline{\mathbb{R}}$ is a convex function if

- 1 dom *J* is a convex set.
- **2** For all $u, v \in \text{dom } J$ and $\alpha \in [0, 1]$ it holds that

$$J(\alpha u + (1 - \alpha)v) \le \alpha J(u) + (1 - \alpha)J(v).$$

We say J is **strictly convex** if the above inequality is strict for all $\alpha \in (0,1)$ and $u \neq v$.

Examples

- $J_{data}(u) = \|u z\|_{\rho}^{\rho}$, where $\rho \ge 1$ and $\|\cdot\|_{\rho}$ is ℓ^{ρ} -norm.
- $J_{regu}(u) = ||Ku||_q^q$, where K is linear transform and $q \ge 1$.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$, where $\alpha > 0$.

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Examples

- $J_{data}(u) = \|u z\|_p^p$, where $p \ge 1$ and $\|\cdot\|_p$ is ℓ^p -norm.
- $J_{regu}(u) = ||Ku||_q^q$, where K is linear transform and $q \ge 1$.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$, where $\alpha > 0$.
- Negative binary entropy $(\epsilon > 0)$: $J_{\epsilon}(u) = \epsilon (u \log(u) + (1-u) \log(1-u)).$
- Soft plus: $J_{\epsilon}(v) = \epsilon \log(1 + \exp(v/\epsilon))$.

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Examples

- $J_{data}(u) = \|u z\|_p^p$, where $p \ge 1$ and $\|\cdot\|_p$ is ℓ^p -norm.
- $J_{regu}(u) = ||Ku||_q^q$, where K is linear transform and $q \ge 1$.
- $J(u) = J_{data}(u) + \alpha J_{regu}(u)$, where $\alpha > 0$.
- Negative binary entropy $(\epsilon > 0)$: $J_{\epsilon}(u) = \epsilon (u \log(u) + (1-u) \log(1-u)).$
- Soft plus: $J_{\epsilon}(v) = \epsilon \log(1 + \exp(v/\epsilon))$.
- Indicator function of a convex set $C \subset \mathbb{E}$:

$$\delta_{\mathcal{C}}(u) = \begin{cases} 0 & \text{if } u \in \mathcal{C}, \\ \infty & \text{otherwise.} \end{cases}$$

Formulate *constrained optimization* with indicator function:

 $\min J(u) \text{ over } u \in C. \iff \min J(u) + \delta_C(u) \text{ over } u \in \mathbb{E}.$

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Basic facts

(As exercises)

- Any norm (over a normed vector space) is a convex function.
- J is a convex function and A is an affine transform $\Rightarrow u \mapsto J(A(u))$ is a convex function.
- (Jensen's inequality) $J: \mathbb{E} \to \overline{\mathbb{R}}$ is convex iff

$$J\left(\sum_{i=1}^n \alpha_i u^i\right) \leq \sum_{i=1}^n \alpha_i J(u^i),$$

whenever $\{u^i\}_{i=1}^n \subset \mathbb{E}, \{\alpha_i\}_{i=1}^n \subset [0,1], \sum_{i=1}^n \alpha_i = 1.$

(Hence it is an equivalent definition of a convex function.)

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Existence of Minimizer

Subdifferential Convex Conjugate

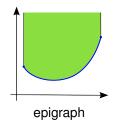
Duality Theory

Epigraph

Definition

The **epigraph** of a proper function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is

$$\mathsf{epi}\, J = \{(u,\alpha) \in \mathbb{E} \times \mathbb{R} : J(u) \leq \alpha\}.$$



Theorem

A proper function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is convex (resp. strictly convex) iff epi J is a convex (resp. strictly convex) set.

Proof: as exercise.

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Lipschitz continuity

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Definition

Assume $J: \mathbb{E} \to \overline{\mathbb{R}}$ with rint dom $J \neq \emptyset$. We say J is **locally Lipschitz** at $u \in \text{rint dom } J$ with modulus $L_u > 0$ if there exists $\epsilon > 0$ s.t.

$$|J(u^1) - J(u^2)| \le L_u ||u^1 - u^2|| \quad \forall u^1, u^2 \in B_{\epsilon}(u) \cap \text{rint dom } J.$$

Lipschitz continuity

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Functio

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Definition

Assume $J: \mathbb{E} \to \overline{\mathbb{R}}$ with rint dom $J \neq \emptyset$. We say J is **locally Lipschitz** at $u \in \text{rint dom } J$ with modulus $L_u > 0$ if there exists $\epsilon > 0$ s.t.

$$|J(u^1)-J(u^2)|\leq L_u\|u^1-u^2\|\quad\forall u^1,u^2\in B_\epsilon(u)\cap {\sf rint\,dom\,} J.$$

Theorem

A proper convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is locally Lipschitz at any $u \in \operatorname{rint} \operatorname{dom} J$.

Proof: found in script.

Existence of Minimizer

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Global vs. Local minimizer

Recall the optimization of $J: \mathbb{E} \to \overline{\mathbb{R}}$:

minimize J(u) over $u \in \mathbb{E}$.

Definition

- 1 $u^* \in \mathbb{E}$ is a global minimizer if $J(u^*) \leq J(u)$ for all $u \in \mathbb{E}$.
- 2 u^* is a **local minimizer** if $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u)$ for all $u \in B_{\epsilon}(u^*)$.
- 3 In the above definitions, a global/local minimizer is **strict** if $J(u^*) \le J(u)$ is replaced by $J(u^*) < J(u)$.

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Global vs. Local minimizer

Recall the optimization of $J: \mathbb{E} \to \overline{\mathbb{R}}$:

minimize J(u) over $u \in \mathbb{E}$.

Definition

- 1 $u^* \in \mathbb{E}$ is a global minimizer if $J(u^*) \leq J(u)$ for all $u \in \mathbb{E}$.
- 2 u^* is a **local minimizer** if $\exists \epsilon > 0$ s.t. $J(u^*) \leq J(u)$ for all $u \in B_{\epsilon}(u^*)$.
- 3 In the above definitions, a global/local minimizer is **strict** if $J(u^*) \le J(u)$ is replaced by $J(u^*) < J(u)$.

Theorem

For any proper convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$, if $u^* \in \text{dom } J$ is a local minimizer of J, then it is also a global minimizer.

Proof: on board.

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

xistence of Min

Subdifferential

Convex Conjugate
Duality Theory
Proximal Operator

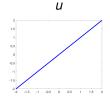
Does a minimizer always exist?

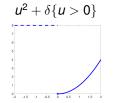
Consider

minimize J(u) over $u \in \mathbb{E}$,

where $J: \mathbb{E} \to \overline{\mathbb{R}}$ is a proper, convex function.

• Some counterexamples for $J: \mathbb{R} \to \overline{\mathbb{R}}$:





 Next we formalize our observations and derive sufficient conditions for existence. **Convex Analysis**

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

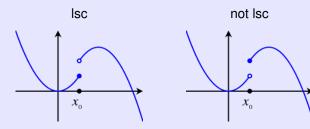
Duality Theory

Sufficient conditions for existence

Definition

- **1** *J* is **bounded from below** if $J(\cdot) \geq C$ for some $C \in \mathbb{R}$.
- **2** *J* is **coercive** if $J(u) \to \infty$ whenever $||u|| \to \infty$.
 - Proposition: J is coercive if dom J is bounded.
- 3 J is lower semi-continuous (lsc) at u^* if

$$J(u^*) \leq \liminf_{k \to \infty} J(u^k)$$
, whenever $u^k \to u^*$.



Proposition: J is lsc iff epi J is closed.

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory
Proximal Operator

Last updated: 28.10.2019

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Definition

- **1** J is **bounded from below** if $J(\cdot) \geq C$ for some $C \in \mathbb{R}$.
- 2 *J* is **coercive** if $J(u) \to \infty$ whenever $||u|| \to \infty$.
- 3 J is lower semi-continuous (lsc) at u^* if

 $J(u^*) \leq \liminf_{k \to \infty} J(u^k)$, whenever $u^k \to u^*$.

Theorem

Any proper function $J: \mathbb{E} \to \overline{\mathbb{R}}$, which is bounded from below, coercive, and lsc (everywhere), has a (global) minimizer. Proof: on board.

Uniqueness

Convex Analysis

Tao Wu Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Theorem

The minimizer of a strictly convex function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is unique. Proof: on board.

 $J(\alpha u + (1 - \alpha)v) < \alpha J(u) + (1 - \alpha)J(v),$

• Recall that a function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is strictly convex if

for all $u, v \in \text{dom } J$, $u \neq v$, $\alpha \in (0, 1)$.