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Convex Optimization

Notations

• E is a Euclidean space (i.e., finite dimensional inner
product space), equipped with

1 Inner product 〈·, ·〉, e.g., 〈u, v〉 = u>v if E = Rn;
2 Norm ‖·‖ =

√
〈·, ·〉 satisfying polarization identity:

2‖u‖2 + 2‖v‖2 = ‖u + v‖2 + ‖u − v‖2.

• C is a closed, convex subset of E.
• J is a convex objective function.

Convex optimization

minimize J(u) over u ∈ C.

First questions:
• What is a convex set?
• What is a convex function?
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Convex set

Definition

A set C is said to be convex if

αu + (1− α)v ∈ C, ∀u, v ∈ C, ∀α ∈ [0,1].

convex non-convex
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Recall basic concepts in analysis

Definition

• A set C ⊂ E is open if ∀u ∈ C, ∃ε > 0 s.t. Bε(u) ⊂ C,
where Bε(u) := {v ∈ E : ‖v − u‖ < ε}.

• A set C ⊂ E is closed if its complement E\C is open.
• The closure of a set C ⊂ E is

cl C = {u ∈ E : ∃{uk} ⊂ C s.t. lim
k→∞

uk = u}.

• The interior of a set C ⊂ E is

int C = {u ∈ C : ∃ε > 0 s.t. Bε(u) ⊂ C}.

• The relative interior of a set C ⊂ E is

rint C = {u ∈ C : ∃ε > 0 s.t. Bε(u) ∩ aff C ⊂ C},

with aff C the affine hull of C. If C is a convex set, then

rint C = {u ∈ C : ∀v ∈ C,∃α > 1 s.t. v + α(u − v) ∈ C}.
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Basic properties
The following operations preserve the convexity:
• Intersection: C1 ∩ C2.
• Summation: C1 + C2 := {u1 + u2 : u1 ∈ C1,u2 ∈ C2}.
• Closure: cl C.
• Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex cone

C is a cone if C = αC for any α > 0.
C is a convex cone if C is a cone and is convex as well.

Convex cone.



Convex Analysis

Tao Wu
Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Last updated: 28.10.2019

Basic properties
The following operations preserve the convexity:
• Intersection: C1 ∩ C2.
• Summation: C1 + C2 := {u1 + u2 : u1 ∈ C1,u2 ∈ C2}.
• Closure: cl C.
• Interior and relative interior: int C, rint C.

In general, the union of convex sets is not convex.

Convex cone

C is a cone if C = αC for any α > 0.
C is a convex cone if C is a cone and is convex as well.

Convex cone.



Convex Analysis

Tao Wu
Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Last updated: 28.10.2019

Separation of convex sets

Theorem (separation of convex sets)

Let C1, C2 be nonempty convex subsets of E.
1 Assume C1 is closed and C2 = {w} ⊂ E\C1. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.

〈v ,w〉 > α ≥ 〈v ,u〉 , ∀u ∈ C1.

2 Assume C1 is open and C2 = {w} ⊂ E\C1. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.

〈v ,w〉 ≥ α ≥ 〈v ,u〉 , ∀u ∈ C1.

3 Assume C1 ∩ C2 = ∅ and C1 is open. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.〈

v ,u1〉 ≥ α ≥ 〈v ,u2〉 , ∀u1 ∈ C1, u2 ∈ C2.

4 Assume ∅ 6= int C1 ⊂ E\C2. Then
∃v ∈ E, v 6= 0, α ∈ R s.t.〈

v ,u1〉 ≥ α ≥ 〈v ,u2〉 , ∀u1 ∈ C1, u2 ∈ C2.
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Convex Function
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Convex functions

• An extended real-valued function J maps from E to
R := R ∪ {∞}.

• The domain of J : E→ R is

dom J = {u ∈ E : J(u) <∞}.

• The function J : E→ R is proper if dom J 6= ∅.

Definition

We say J : E→ R is a convex function if

1 dom J is a convex set.

2 For all u, v ∈ dom J and α ∈ [0, 1] it holds that

J(αu + (1− α)v) ≤ αJ(u) + (1− α)J(v).

We say J is strictly convex if the above inequality is strict for
all α ∈ (0,1) and u 6= v .
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Examples

• Jdata(u) = ‖u − z‖p
p, where p ≥ 1 and ‖ · ‖p is `p-norm.

• Jregu(u) = ‖Ku‖q
q , where K is linear transform and q ≥ 1.

• J(u) = Jdata(u) + αJregu(u), where α > 0.

• Negative binary entropy (ε > 0):
Jε(u) = ε

(
u log(u) + (1− u) log(1− u)

)
.

• Soft plus: Jε(v) = ε log(1 + exp(v/ε)).

• Indicator function of a convex set C ⊂ E:

δC(u) =

{
0 if u ∈ C,
∞ otherwise.

Formulate constrained optimization with indicator function:

min J(u) over u ∈ C. ↔ min J(u) + δC(u) over u ∈ E.
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Basic facts

(As exercises)
• Any norm (over a normed vector space) is a convex

function.

• J is a convex function and A is an affine transform
⇒ u 7→ J(A(u)) is a convex function.

• (Jensen’s inequality) J : E→ R is convex iff

J

(
n∑

i=1

αiui

)
≤

n∑
i=1

αiJ(ui),

whenever {ui}n
i=1 ⊂ E, {αi}n

i=1 ⊂ [0,1],
∑n

i=1 αi = 1.

(Hence it is an equivalent definition of a convex function.)
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Epigraph

Definition

The epigraph of a proper function J : E→ R is

epi J = {(u, α) ∈ E× R : J(u) ≤ α}.

epigraph

Theorem

A proper function J : E→ R is convex (resp. strictly convex) iff
epi J is a convex (resp. strictly convex) set.

Proof: as exercise.
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Lipschitz continuity

Definition

Assume J : E→ R with rint dom J 6= ∅. We say J is locally
Lipschitz at u ∈ rint dom J with modulus Lu > 0 if there exists
ε > 0 s.t.

|J(u1)− J(u2)| ≤ Lu‖u1 − u2‖ ∀u1,u2 ∈ Bε(u) ∩ rint dom J.

Theorem

A proper convex function J : E→ R is locally Lipschitz at any
u ∈ rint dom J.

Proof: found in script.
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Existence of Minimizer
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Global vs. Local minimizer

Recall the optimization of J : E→ R:

minimize J(u) over u ∈ E.

Definition

1 u∗ ∈ E is a global minimizer if J(u∗) ≤ J(u) for all u ∈ E.
2 u∗ is a local minimizer if ∃ε > 0 s.t. J(u∗) ≤ J(u) for all

u ∈ Bε(u∗).
3 In the above definitions, a global/local minimizer is strict if

J(u∗) ≤ J(u) is replaced by J(u∗) < J(u).

Theorem

For any proper convex function J : E→ R, if u∗ ∈ dom J is a
local minimizer of J, then it is also a global minimizer.

Proof: on board.



Convex Analysis

Tao Wu
Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Last updated: 28.10.2019

Global vs. Local minimizer

Recall the optimization of J : E→ R:

minimize J(u) over u ∈ E.

Definition

1 u∗ ∈ E is a global minimizer if J(u∗) ≤ J(u) for all u ∈ E.
2 u∗ is a local minimizer if ∃ε > 0 s.t. J(u∗) ≤ J(u) for all

u ∈ Bε(u∗).
3 In the above definitions, a global/local minimizer is strict if

J(u∗) ≤ J(u) is replaced by J(u∗) < J(u).

Theorem

For any proper convex function J : E→ R, if u∗ ∈ dom J is a
local minimizer of J, then it is also a global minimizer.

Proof: on board.



Convex Analysis

Tao Wu
Zhenzhang Ye

Convex Set

Convex Function

Existence of Minimizer

Subdifferential

Convex Conjugate

Duality Theory

Proximal Operator

Last updated: 28.10.2019

Does a minimizer always exist?

• Consider
minimize J(u) over u ∈ E,

where J : E→ R is a proper, convex function.

• Some counterexamples for J : R→ R:

u exp u u2 + δ{u > 0}

• Next we formalize our observations and derive sufficient
conditions for existence.
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Sufficient conditions for existence

Definition

1 J is bounded from below if J(·) ≥ C for some C ∈ R.

2 J is coercive if J(u)→∞ whenever ‖u‖ → ∞.
• Proposition: J is coercive if dom J is bounded.

3 J is lower semi-continuous (lsc) at u∗ if

J(u∗) ≤ lim inf
k→∞

J(uk ), whenever uk → u∗.

lsc not lsc

• Proposition: J is lsc iff epi J is closed.

Theorem

Any proper function J : E→ R, which is bounded from below,
coercive, and lsc (everywhere), has a (global) minimizer.

Proof: on board.
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Uniqueness

• Recall that a function J : E→ R is strictly convex if

J(αu + (1− α)v) < αJ(u) + (1− α)J(v),

for all u, v ∈ dom J, u 6= v , α ∈ (0,1).

Theorem

The minimizer of a strictly convex function J : E→ R is unique.

Proof: on board.


