Chapter 2
 Optimization Algorithms

Convex Optimization for Machine Learning \& Computer Vision WS 2019/20

Tao Wu
Zhenzhang Ye
Computer Vision Group
Department of Informatics
TU Munich

Gradient-based Methods

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization
Problem setting:
minimize $J(u) \quad$ over $u \in \mathbb{E}$.
Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization

$$
\text { minimize } J(u) \quad \text { over } u \in \mathbb{E} .
$$

Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Methods under consideration:
(1) (Scaled) gradient descent.
(2) Line search method.
(3) Majorize-minimize method.

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization
Problem setting:

$$
\text { minimize } J(u) \quad \text { over } u \in \mathbb{E} .
$$

Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Methods under consideration:
(1) (Scaled) gradient descent.
(2) Line search method.
(3) Majorize-minimize method.

Analytical questions:
(1) Convergence (or not); global vs. local convergence.
(2) Convergence rate (in special cases).

Descent method

Descent method

Initialize $u^{0} \in \mathbb{E}$. Iterate with $k=0,1,2, \ldots$
(1) If the stopping criteria $\left\|\nabla J\left(u^{k}\right)\right\| \leq \epsilon$ is not satisfied, then continue; otherwise return u^{k} and stop.
(2) Choose a descent direction $d^{k} \in \mathbb{E}$ s.t.

$$
\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0 .
$$

(3 Choose an "appropriate" step size $\tau^{k}>0$, and update

$$
u^{k+1}=u^{k}+\tau^{k} d^{k}
$$

Descent direction

Theorem

If $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0$, then $J\left(u^{k}+\tau d^{k}\right)<J\left(u^{k}\right)$ for all sufficiently small $\tau>0$.

Descent direction

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

Descent direction

Theorem

If $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0$, then $J\left(u^{k}+\tau d^{k}\right)<J\left(u^{k}\right)$ for all sufficiently small $\tau>0$.
Proof: Use the Taylor expansion:

$$
\begin{aligned}
& J\left(u^{k}+\tau d^{k}\right)=J\left(u^{k}\right)+\tau\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle+o(\tau) \\
= & J\left(u^{k}\right)+\tau\left(\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle+o(1)\right)<J\left(u^{k}\right) \quad \text { as } \tau \rightarrow 0^{+} .
\end{aligned}
$$

Choices of descent direction

(1) Gradient/Steepest descent:

$$
d^{k}=-\nabla J\left(u^{k}\right)=\arg \min _{d \in \mathbb{E},\|d\| \leq 1}\left\langle\nabla J\left(u^{k}\right), d\right\rangle .
$$

(2) Scaled gradient: $d^{k}=-\left(H^{k}\right)^{-1} \nabla J\left(u^{k}\right)$.
(3) Newton: $H^{k}=\nabla^{2} J\left(u^{k}\right)$, assuming J is twice continuously differentiable and $\nabla^{2} J\left(u^{k}\right)$ is spd.
(4) Quasi-Newton: $H^{k} \approx \nabla^{2} J\left(u^{k}\right), H^{k}$ is spd.

Gradient descent with exact line search

Gradient Methods

- Gradient descent with exact line search:

$$
\begin{aligned}
u^{k+1} & =u^{k}-\tau^{k} \nabla J\left(u^{k}\right) \\
\tau^{k} & =\arg \min _{\tau \geq 0} J\left(u^{k}-\tau \nabla J\left(u^{k}\right)\right)
\end{aligned}
$$

Gradient descent with exact line search

- Gradient descent with exact line search:

$$
\begin{aligned}
u^{k+1} & =u^{k}-\tau^{k} \nabla J\left(u^{k}\right), \\
\tau^{k} & =\arg \min _{\tau \geq 0} J\left(u^{k}-\tau \nabla J\left(u^{k}\right)\right)
\end{aligned}
$$

- Case study: $J(u)=\frac{1}{2}\langle u, Q u\rangle-\langle b, u\rangle$, matrix Q is spd.
$-\nabla J(u)=Q u-b,\|\cdot\|_{Q}^{2} \equiv\langle\cdot, Q \cdot\rangle$.

Gradient descent with exact line search

- Case study: $J(u)=\frac{1}{2}\langle u, Q u\rangle-\langle b, u\rangle$, matrix Q is spd.

$$
\begin{aligned}
& -\nabla J(u)=Q u-b,\|\cdot\|_{Q}^{2} \equiv\langle\cdot, Q \cdot\rangle . \\
& -\tau^{k}=\arg \min _{\tau \geq 0} J\left(u^{k}-\tau \nabla J\left(u^{k}\right)\right)=\frac{\left\|\nabla J\left(u^{k}\right)\right\|^{2}}{\left\|\nabla J\left(u^{k}\right)\right\|_{Q}^{2}} \Rightarrow \\
& \left\|u^{k+1}-u^{*}\right\|_{Q}^{2}=\left(1-\frac{\left\|\nabla J\left(u^{k}\right)\right\|^{4}}{\left\|\nabla J\left(u^{k}\right)\right\|_{Q}^{2}\left\|\nabla J\left(u^{k}\right)\right\|_{Q^{-1}}^{2}}\right)\left\|u^{k}-u^{*}\right\|_{Q}^{2} \\
& \quad \leq\left(\frac{\lambda_{\max }(Q)-\lambda_{\min }(Q)}{\lambda_{\max }(Q)+\lambda_{\min }(Q)}\right)^{2}\left\|u^{k}-u^{*}\right\|_{Q}^{2} .
\end{aligned}
$$

Inexact line search

Backtracking line search

- Sufficient decrease condition (let $\left.c_{1} \in(0,1)\right)$:

$$
\begin{equation*}
J\left(u^{k}+\tau d^{k}\right) \leq J\left(u^{k}\right)+c_{1} \tau\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle . \tag{A}
\end{equation*}
$$

- Curvature condition (let $\left.c_{2} \in\left(c_{1}, 1\right)\right)$:

$$
\begin{equation*}
\left\langle\nabla J\left(u^{k}+\tau d^{k}\right), d^{k}\right\rangle \geq c_{2}\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle . \tag{C}
\end{equation*}
$$

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

Inexact line search

Backtracking line search

- Sufficient decrease condition (let $\left.c_{1} \in(0,1)\right)$:

$$
\begin{equation*}
J\left(u^{k}+\tau d^{k}\right) \leq J\left(u^{k}\right)+c_{1} \tau\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle . \tag{A}
\end{equation*}
$$

- Curvature condition (let $\left.c_{2} \in\left(c_{1}, 1\right)\right)$:

$$
\begin{equation*}
\left\langle\nabla J\left(u^{k}+\tau d^{k}\right), d^{k}\right\rangle \geq c_{2}\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle . \tag{C}
\end{equation*}
$$

- $(A) \rightsquigarrow$ Armijo line search; $(A) \&(C) \rightsquigarrow$ Wolfe-Powell I.s.

Armijo I.s.

Wolfe-Powell I.s.

Convergence of backtracking line search

Lemma (feasibility of line search)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable, $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0 \forall k$, and $0<c_{1}<c_{2}<1$. Then there exists an open interval in which the step size τ satisfies (A) and (C). Proof: on board.

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

Convergence of backtracking line search

Lemma (feasibility of line search)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable, $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0 \forall k$, and $0<c_{1}<c_{2}<1$. Then there exists an open interval in which the step size τ satisfies (A) and (C). Proof: on board.

Theorem (Zoutendijk)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is cont'ly differentiable, and (A) and (C)

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary are both satisfied with $0<c_{1}<c_{2}<1$ for each k. In addition, J is μ-Lipschitz differentiable on $\left\{u \in \mathbb{E}: J(u) \leq J\left(u^{0}\right)\right\}$. Then

$$
\sum_{k=0}^{\infty} \frac{\left|\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle\right|^{2}}{\left\|d^{k}\right\|^{2}}<\infty
$$

Proof: on board.
Remark
If $\frac{\left|\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle\right|}{\left\|\nabla J\left(u^{k}\right)\right\|\left\|d^{k}\right\|} \geq$ constant >0, then $\lim _{k \rightarrow \infty}\left\|\nabla J\left(u^{k}\right)\right\|=0$.

Majorize-minimize method

Majorizing function

A function $\widehat{J}(\cdot ; u)$ is a majorant of J at $u \in \mathbb{E}$ if

$$
\left\{\begin{array}{l}
\hat{J}(u ; u)=J(u) \\
\widehat{J}(\cdot ; u) \geq J(\cdot)
\end{array}\right.
$$

Majorize-minimize method

Majorizing function

A function $\widehat{J}(\cdot ; u)$ is a majorant of J at $u \in \mathbb{E}$ if

$$
\left\{\begin{array}{l}
\widehat{J}(u ; u)=J(u), \\
\widehat{J}(\cdot ; u) \geq J(\cdot) .
\end{array}\right.
$$

Majorize-minimize (MM) algorithm

Let $\widehat{J}(\cdot ; u)$ majorize $J \forall u \in \mathbb{E}$. Then the MM iteration reads:

$$
u^{k+1} \in \arg \min _{u} \widehat{J}\left(u ; u^{k}\right) .
$$

Gradient descent as MM

Remark

(1) Monotonic decrease of objectives:

$$
J\left(u^{k+1}\right) \leq \widehat{J}\left(u^{k+1} ; u^{k}\right) \leq \widehat{J}\left(u^{k} ; u^{k}\right)=J\left(u^{k}\right) .
$$

(2) Efficiency of MM relies on the choice of the majorant $\widehat{J}(\cdot ; u)$, i.e., $\widehat{J}(\cdot ; u)$ is easy to minimize.
(3) Common choices of $\widehat{J}(\cdot ; u)$ are quadratics.

Gradient descent as MM

Remark

(1) Monotonic decrease of objectives:

$$
J\left(u^{k+1}\right) \leq \widehat{J}\left(u^{k+1} ; u^{k}\right) \leq \widehat{J}\left(u^{k} ; u^{k}\right)=J\left(u^{k}\right) .
$$

(2) Efficiency of MM relies on the choice of the majorant $\widehat{J}(\cdot ; u)$, i.e., $\widehat{J}(\cdot ; u)$ is easy to minimize.
(3) Common choices of $\widehat{J}(\cdot ; u)$ are quadratics.

Gradient descent as MM

- Observe that $u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)$ iff

$$
u^{k+1}=\arg \min _{u} J\left(u^{k}\right)+\left\langle\nabla J\left(u^{k}\right), u-u^{k}\right\rangle+\frac{1}{2 \tau}\left\|u-u^{k}\right\|^{2} .
$$

- When $J\left(u^{k}\right)+\left\langle\nabla J\left(u^{k}\right), \cdot-u^{k}\right\rangle+\frac{1}{2 \tau}\left\|\cdot-u^{k}\right\|^{2} \geq J(\cdot)$ holds?

Gradient descent as MM

Lemma

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then $\forall u, v \in \mathbb{E}$:

$$
|J(v)-J(u)-\langle\nabla J(u), v-u\rangle| \leq \frac{\mu}{2}\|v-u\|^{2} .
$$

Proof: on board.

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

Gradient descent as MM

Lemma

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then $\forall u, v \in \mathbb{E}$:

$$
|J(v)-J(u)-\langle\nabla J(u), v-u\rangle| \leq \frac{\mu}{2}\|v-u\|^{2} .
$$

Proof: on board.

Theorem (convergence of gradient descent)

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then the gradient descent iteration

$$
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)
$$

with $\tau \in(0,1 / \mu]$ yields $\lim _{k \rightarrow \infty} \nabla J\left(u^{k}\right)=0$.
Proof: on board.

Gradient descent as MM

Lemma

Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then $\forall u, v \in \mathbb{E}$:

$$
|J(v)-J(u)-\langle\nabla J(u), v-u\rangle| \leq \frac{\mu}{2}\|v-u\|^{2}
$$

Proof: on board.
Theorem (convergence of gradient descent)
Assume that $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz differentiable. Then the gradient descent iteration

$$
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)
$$

with $\tau \in(0,1 / \mu]$ yields $\lim _{k \rightarrow \infty} \nabla J\left(u^{k}\right)=0$.
Proof: on board.

Recipe of convergence

By solving the surrogate problem in MM, we achieve: (1) sufficient decrease in the objective; (2) inexact optimality condition which matches the exact OC in the limit.

Agenda for the rest of the chapter

- Four proximal algorithms in convex optimization:
- Forward-backward splitting (FBS) (= proximal gradient method).
- Alternating direction method of multipliers (ADMM).
- Primal-dual hybrid gradient (PDHG).
- Douglas-Rachford splitting (DRS), Peaceman-Rachford splitting (PRS).
- A common theme: "operator splitting" \& extensively use prox operations.

Agenda for the rest of the chapter

- Four proximal algorithms in convex optimization:
- Forward-backward splitting (FBS) (= proximal gradient method).
- Alternating direction method of multipliers (ADMM).
- Primal-dual hybrid gradient (PDHG).
- Douglas-Rachford splitting (DRS), Peaceman-Rachford splitting (PRS).
- A common theme: "operator splitting" \& extensively use prox operations.
- We'll cover: (1) Derivation of algorithms; (2) Connections between algorithms; (3) Demo in Python; and ...
- Unified convergence analysis.
- Acceleration techniques.

Forward-backward splitting

- Consider the convex optimization problem:

$$
\min _{u} F(u)+G(u),
$$

with G differentiable and F possibly non-differentiable.

- Its minimizer is characterized by

$$
0 \in \partial F(u)+\nabla G(u) .
$$

Gradient Methods

Forward-backward splitting

- Consider the convex optimization problem:

$$
\min _{u} F(u)+G(u),
$$

with G differentiable and F possibly non-differentiable.

- Its minimizer is characterized by

$$
0 \in \partial F(u)+\nabla G(u) .
$$

- Forward-backward splitting (FBS):

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau F}\left(u^{k}-\tau \nabla G\left(u^{k}\right)\right) \\
& =(I+\tau \partial F)^{-1} \circ(I-\tau \nabla G)\left(u^{k}\right) .
\end{aligned}
$$

- FBS as semi-implicit Euler scheme:

$$
\frac{u^{k+1}-u^{k}}{\tau} \in-\partial F\left(u^{k+1}\right)-\nabla G\left(u^{k}\right)
$$

Example: Split feasibility problem

Split feasibility problem

Given nonempty, closed, convex sets $C_{1} \subset \mathbb{E}_{1}, C_{2} \subset \mathbb{E}_{2}$, and linear operator $K: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$, find $u \in \mathbb{E}_{1}$ s.t. $u \in C_{1}, K u \in C_{2}$.

- Variational model:

$$
\min _{u \in \mathbb{E}_{1}} \delta_{C_{1}}(u)+\frac{1}{2}\left\|K u-\operatorname{proj}_{C_{2}}(K u)\right\|^{2} .
$$

Note that $\frac{1}{2}\left\|v-\operatorname{proj}_{C_{2}}(v)\right\|^{2}=\operatorname{env}_{1} \delta_{C_{2}}(v)$.

Example: Split feasibility problem

Split feasibility problem

Given nonempty, closed, convex sets $C_{1} \subset \mathbb{E}_{1}, C_{2} \subset \mathbb{E}_{2}$, and linear operator $K: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$, find $u \in \mathbb{E}_{1}$ s.t. $u \in C_{1}, K u \in C_{2}$.

- Variational model:

$$
\min _{u \in \mathbb{E}_{1}} \delta_{C_{1}}(u)+\frac{1}{2}\left\|K u-\operatorname{proj}_{C_{2}}(K u)\right\|^{2}
$$

Note that $\frac{1}{2}\left\|v-\operatorname{proj}_{C_{2}}(v)\right\|^{2}=\operatorname{env}_{1} \delta_{C_{2}}(v)$.

- Optimality condition:

$$
0 \in \partial \delta_{C_{1}}(u)+K^{\top}\left(I-\operatorname{proj}_{C_{2}}\right)(K u) .
$$

Recall that $\nabla \operatorname{env}_{1} \delta_{C_{2}}(v)=\left(I-\operatorname{prox}_{\delta_{C_{2}}}\right)(v)$.

Example: Split feasibility problem

Split feasibility problem

Given nonempty, closed, convex sets $C_{1} \subset \mathbb{E}_{1}, C_{2} \subset \mathbb{E}_{2}$, and linear operator $K: \mathbb{E}_{1} \rightarrow \mathbb{E}_{2}$, find $u \in \mathbb{E}_{1}$ s.t. $u \in C_{1}, K u \in C_{2}$.

- Variational model:

$$
\min _{u \in \mathbb{E}_{1}} \delta_{C_{1}}(u)+\frac{1}{2}\left\|K u-\operatorname{proj}_{C_{2}}(K u)\right\|^{2}
$$

Note that $\frac{1}{2}\left\|v-\operatorname{proj}_{C_{2}}(v)\right\|^{2}=\operatorname{env}_{1} \delta_{C_{2}}(v)$.

- Optimality condition:

$$
0 \in \partial \delta_{C_{1}}(u)+K^{\top}\left(I-\operatorname{proj}_{C_{2}}\right)(K u) .
$$

Recall that $\nabla \operatorname{env}_{1} \delta_{C_{2}}(v)=\left(I-\operatorname{prox}_{\delta_{C_{2}}}\right)(v)$.

- Apply FBS \Rightarrow

$$
\begin{aligned}
u^{k+1} & =\left(I+\tau \partial \delta_{C_{1}}\right)^{-1}\left(u^{k}-\tau K^{\top}\left(I-\operatorname{proj}_{C_{2}}\right)\left(K u^{k}\right)\right) \\
& =\operatorname{proj}_{C_{1}}\left(u^{k}-\tau K^{\top}\left(I-\operatorname{proj}_{C_{2}}\right)\left(K u^{k}\right)\right) .
\end{aligned}
$$

Alternating direction method of multipliers

- Consider

$$
\min _{u, v} J(u, v)=F(v)+G(u)+\delta\{K u-v=0\},
$$

given proper, convex, Isc functions F, G and matrix K.

Alternating direction method of multipliers

- Consider

$$
\min _{u, v} J(u, v)=F(v)+G(u)+\delta\{K u-v=0\}
$$

given proper, convex, Isc functions F, G and matrix K.

- Augmented Lagrangian ($\tau>0$):

$$
\mathcal{L}_{\tau}(u, v ; p)=F(v)+G(u)+\langle p, K u-v\rangle+\frac{\tau}{2}\|K u-v\|^{2}
$$

such that

$$
\min _{u, v} J(u, v)=\inf _{u, v} \sup _{p} \mathcal{L}_{\tau}(u, v ; p)
$$

Alternating direction method of multipliers

- Consider

$$
\min _{u, v} J(u, v)=F(v)+G(u)+\delta\{K u-v=0\}
$$

given proper, convex, Isc functions F, G and matrix K.

- Augmented Lagrangian ($\tau>0$):

$$
\mathcal{L}_{\tau}(u, v ; p)=F(v)+G(u)+\langle p, K u-v\rangle+\frac{\tau}{2}\|K u-v\|^{2}
$$

such that

$$
\min _{u, v} J(u, v)=\inf _{u, v} \sup _{p} \mathcal{L}_{\tau}(u, v ; p)
$$

- Alternating direction method of multipliers (ADMM):

$$
\left\{\begin{array}{l}
u^{k+1} \in \arg \min _{u} G(u)+\left\langle p^{k}, K u\right\rangle+\frac{\tau}{2}\left\|K u-v^{k}\right\|^{2} \\
v^{k+1} \in \arg \min _{v} F(v)-\left\langle p^{k}, v\right\rangle+\frac{\tau}{2}\left\|K u^{k+1}-v\right\|^{2} \\
p^{k+1}=p^{k}+\tau\left(K u^{k+1}-v^{k+1}\right)
\end{array}\right.
$$

Example: Consensus ADMM

Optimization Algorithms

Tao Wu
Zhenzhang Ye

- Empirical risk minimization (ERM):

$$
\min _{u} F(u)+\frac{1}{n} \sum_{i=1}^{n} G_{i}(u)
$$

where G_{i} represents the training error on sample $\left(x_{i}, y_{i}\right)$:

$$
G_{i}(u)=\operatorname{loss}\left(h\left(x_{i} ; u\right), y_{i}\right),
$$

and F represents the model prior.

Example: Consensus ADMM

- Empirical risk minimization (ERM):

$$
\min _{u} F(u)+\frac{1}{n} \sum_{i=1}^{n} G_{i}(u),
$$

where G_{i} represents the training error on sample $\left(x_{i}, y_{i}\right)$:

$$
G_{i}(u)=\operatorname{loss}\left(h\left(x_{i} ; u\right), y_{i}\right),
$$

and F represents the model prior.

- Consensus optimization:

$$
\begin{aligned}
\min _{u,\left\{v_{i}\right\}} & F(u)+\frac{1}{n} \sum_{i=1}^{n} G_{i}\left(v_{i}\right) \\
\text { s.t. } & v_{i}=u \quad \forall i \in\{1, \ldots, n\} .
\end{aligned}
$$

Example: Consensus ADMM

- Consensus optimization:

Optimization Algorithms

Tao Wu

$$
\begin{aligned}
\min _{u,\left\{v_{i}\right\}} & F(u)+\frac{1}{n} \sum_{i=1}^{n} G_{i}\left(v_{i}\right) \\
\text { s.t. } & v_{i}=u \quad \forall i \in\{1, \ldots, n\} .
\end{aligned}
$$

Zhenzhang Ye

Zhenzhang

Gradient Methods
Proximal Algorithms
Convergence Theory
Acceleration
Summary

Example: Consensus ADMM

- Consensus optimization:

$$
\begin{aligned}
\min _{u,\left\{v_{i}\right\}} & F(u)+\frac{1}{n} \sum_{i=1}^{n} G_{i}\left(v_{i}\right) \\
\text { s.t. } & v_{i}=u \quad \forall i \in\{1, \ldots, n\} .
\end{aligned}
$$

- Augmented Lagrangian:

$$
\mathcal{L}_{\tau}\left(u,\left\{v_{i}\right\},\left\{p_{i}\right\}\right)=F(u)+\frac{1}{n} \sum_{i=1}^{n}\left(G_{i}\left(v_{i}\right)+\left\langle p_{i}, v_{i}-u\right\rangle+\frac{\tau}{2}\left\|v_{i}-u\right\|^{2}\right) .
$$

Gradient Methods

Example: Consensus ADMM

- Consensus optimization:

$$
\begin{aligned}
\min _{u,\left\{v_{i}\right\}} & F(u)+\frac{1}{n} \sum_{i=1}^{n} G_{i}\left(v_{i}\right) \\
\text { s.t. } & v_{i}=u \quad \forall i \in\{1, \ldots, n\} .
\end{aligned}
$$

- Augmented Lagrangian:

$$
\mathcal{L}_{\tau}\left(u,\left\{v_{i}\right\},\left\{p_{i}\right\}\right)=F(u)+\frac{1}{n} \sum_{i=1}^{n}\left(G_{i}\left(v_{i}\right)+\left\langle p_{i}, v_{i}-u\right\rangle+\frac{\tau}{2}\left\|v_{i}-u\right\|^{2}\right) .
$$

Tao Wu

Zhenzhang Ye

Gradient Methods

- Consensus ADMM:

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{F / \tau}\left(\frac{1}{n} \sum_{i=1}^{n}\left(v_{i}^{k}+\frac{1}{\tau} p_{i}^{k}\right)\right), \\
\forall i: v_{i}^{k+1} & =\operatorname{prox}_{G_{i} / \tau}\left(u^{k+1}-\frac{1}{\tau} p_{i}^{k}\right) \\
\forall i: p_{i}^{k+1} & =p_{i}^{k}+\tau\left(v_{i}^{k+1}-u^{k+1}\right) .
\end{aligned}
$$

Primal-dual hybrid gradient

- By Fenchel-Rockafellar duality theorem, we reformulate

$$
\min _{u} F(K u)+G(u)
$$

as the saddle-point problem:

$$
\sup _{p} \inf _{u}\langle p, K u\rangle+G(u)-F^{*}(p) .
$$

Primal-dual hybrid gradient

- By Fenchel-Rockafellar duality theorem, we reformulate

$$
\min _{u} F(K u)+G(u)
$$

as the saddle-point problem:

$$
\sup _{p} \inf _{u}\langle p, K u\rangle+G(u)-F^{*}(p)
$$

- Primal-dual hybrid gradient (PDHG) $\left(s t>\|K\|^{2}\right)$:

$$
\begin{aligned}
& u^{k+1}=\arg \min _{u}\left\langle u, K^{\top} p^{k}\right\rangle+G(u)+\frac{s}{2}\left\|u-u^{k}\right\|^{2}, \\
& p^{k+1}=\arg \min _{p}-\left\langle K\left(2 u^{k+1}-u^{k}\right), p\right\rangle+F^{*}(p)+\frac{t}{2}\left\|p-p^{k}\right\|^{2} .
\end{aligned}
$$

- Optimality conditions for the updates:

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+s\left(u^{k+1}-u^{k}\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+t\left(p^{k+1}-p^{k}\right)
\end{aligned}
$$

Scaled primal-dual hybrid gradient

- Recall PDGH:

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+s\left(u^{k+1}-u^{k}\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+t\left(p^{k+1}-p^{k}\right)
\end{aligned}
$$

- Replace s, t by spd matrices $S, T \rightsquigarrow$ Scaled PDHG:

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+S\left(u^{k+1}-u^{k}\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+T\left(p^{k+1}-p^{k}\right) .
\end{aligned}
$$

- Scaled PDHG in compact form:

$$
0 \in\left[\begin{array}{cc}
S & -K^{\top} \\
-K & T
\end{array}\right]\left(\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right]-\left[\begin{array}{l}
u^{k} \\
p^{k}
\end{array}\right]\right)+\left[\begin{array}{cc}
\partial G & K^{\top} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right] .
$$

Scaled primal-dual hybrid gradient

- Recall PDGH:

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+s\left(u^{k+1}-u^{k}\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+t\left(p^{k+1}-p^{k}\right)
\end{aligned}
$$

- Replace s, t by spd matrices $S, T \rightsquigarrow$ Scaled PDHG:

$$
\begin{aligned}
& 0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+S\left(u^{k+1}-u^{k}\right) \\
& 0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+T\left(p^{k+1}-p^{k}\right)
\end{aligned}
$$

- Scaled PDHG in compact form:

$$
0 \in\left[\begin{array}{cc}
S & -K^{\top} \\
-K & T
\end{array}\right]\left(\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right]-\left[\begin{array}{l}
u^{k} \\
p^{k}
\end{array}\right]\right)+\left[\begin{array}{cc}
\partial G & K^{\top} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right] .
$$

- Scaled PDHG is a customized proximal iteration:

$$
0 \in M\left(\xi^{k+1}-\xi^{k}\right)+R\left(\xi^{k+1}\right) \Leftrightarrow \xi^{k+1}=(M+R)^{-1} M \xi^{k}
$$

- Sufficient conditions to ensure convergence:
(1) M is spd matrix; (2) R is maximal monotone operator.

Interpret ADMM as customized proximal iteration

- Recall ADMM (with reordered updates):

$$
\begin{align*}
& v^{k+1} \in \arg \min _{v} F(v)-\left\langle p^{k}, v\right\rangle+\frac{\tau}{2}\left\|K u^{k}-v\right\|^{2} \tag{1}\\
& p^{k+1}=p^{k}+\tau\left(K u^{k}-v^{k+1}\right) \tag{2}\\
& u^{k+1} \in \arg \min _{u} G(u)+\left\langle p^{k+1}, K u\right\rangle+\frac{\tau}{2}\left\|K u-v^{k+1}\right\|^{2} \tag{3}
\end{align*}
$$

Convergence Theory
Acceleration
Summary

Interpret ADMM as customized proximal iteration

- Recall ADMM (with reordered updates):

$$
\begin{align*}
& v^{k+1} \in \arg \min _{v} F(v)-\left\langle p^{k}, v\right\rangle+\frac{\tau}{2}\left\|K u^{k}-v\right\|^{2} \tag{1}\\
& p^{k+1}=p^{k}+\tau\left(K u^{k}-v^{k+1}\right) \tag{2}\\
& u^{k+1} \in \arg \min _{u} G(u)+\left\langle p^{k+1}, K u\right\rangle+\frac{\tau}{2}\left\|K u-v^{k+1}\right\|^{2} \tag{3}
\end{align*}
$$

- ADMM as customized proximal iteration:
(1) $\Rightarrow 0 \in \partial F\left(v^{k+1}\right)-p^{k}+\tau\left(v^{k+1}-K u^{k}\right)$,
(3) $\Rightarrow 0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k+1}+\tau K^{\top}\left(K u^{k+1}-v^{k+1}\right)$,
(2), (4) $\Rightarrow p^{k+1} \in \partial F\left(v^{k+1}\right) \Leftrightarrow v^{k+1} \in \partial F^{*}\left(p^{k+1}\right)$,
(2), (5) $\Rightarrow 0 \in \partial G\left(u^{k+1}\right)+K^{\top}\left(2 p^{k+1}-p^{k}\right)+\tau K^{\top} K\left(u^{k+1}-u^{k}\right)$,
(2), (6) $\Rightarrow 0 \in-K u^{k}+\frac{1}{\tau}\left(p^{k+1}-p^{k}\right)+\partial F^{*}\left(p^{k+1}\right)$,
(7), (8) $\Rightarrow 0 \in\left[\begin{array}{cc}\tau K^{\top} K & K^{\top} \\ K & \frac{1}{\tau} I\end{array}\right]\left[\begin{array}{l}u^{k+1}-u^{k} \\ p^{k+1}-p^{k}\end{array}\right]+\left[\begin{array}{cc}\partial G & K^{\top} \\ -K & \partial F^{*}\end{array}\right]\left[\begin{array}{l}u^{k+1} \\ p^{k+1}\end{array}\right]$.

Reflection operator

- Given a proper, convex, Isc function $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\tau>0$, we call

$$
\operatorname{refl}_{\tau J}=2 \operatorname{prox}_{\tau J}-I=2(I+\tau \partial J)^{-1}-I
$$

the reflection operator on ∂J.

- In a more general definition for "refl", ∂J is replaced by a maximal monotone operator.
- We don't formally introduce maximal monotone operator.
- Fact: For any proper, convex, Isc function $J, \partial J$ is indeed a maximal monotone operator.

Reflection operator

- Given a proper, convex, Isc function $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}$ and $\tau>0$, we call

$$
\operatorname{refl}_{\tau J}=2 \operatorname{prox}_{\tau J}-I=2(I+\tau \partial J)^{-1}-I
$$

the reflection operator on ∂J.

- In a more general definition for "refl", ∂J is replaced by a maximal monotone operator.
- We don't formally introduce maximal monotone operator.
- Fact: For any proper, convex, Isc function $J, \partial J$ is indeed a maximal monotone operator.
- Fixed points of refl $\left.\right|_{\tau J}$:

$$
\begin{aligned}
u & =\operatorname{refl}_{\tau J}(u) \\
\Leftrightarrow u & =2 \operatorname{prox}_{\tau J}(u)-u \\
\Leftrightarrow u & =\operatorname{prox}_{\tau J}(u) \\
\Leftrightarrow 0 & \in \partial J(u) .
\end{aligned}
$$

Douglas-Rachford- \& Peaceman-Rachford splitting

- Consider the monotone inclusion problem:

$$
0 \in \partial F(u)+\partial G(u) .
$$

Douglas-Rachford- \& Peaceman-Rachford splitting

- Consider the monotone inclusion problem:

$$
0 \in \partial F(u)+\partial G(u)
$$

- Douglas-Rachford splitting (DRS):

$$
\left\{\begin{array}{l}
u^{k+1}=\operatorname{prox}_{\tau G}\left(v^{k}\right), \tag{DRS}\\
v^{k+1}=v^{k}-u^{k+1}+\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right)
\end{array}\right.
$$

- Peaceman-Rachford splitting (PRS):

$$
\left\{\begin{array}{l}
u^{k+1}=\operatorname{prox}_{\tau G}\left(v^{k}\right), \tag{PRS}\\
v^{k+1}=v^{k}-2 u^{k+1}+2 \operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right) .
\end{array}\right.
$$

- DRS \& PRS in compact forms:

$$
\begin{align*}
v^{k+1} & =\left(\frac{1}{2} I+\frac{1}{2} \operatorname{refl}_{\tau F} \circ \operatorname{refl}_{\tau G}\right)\left(v^{k}\right), \tag{DRS'}\\
v^{k+1} & =\left(\operatorname{refl}_{\tau F} \circ \operatorname{refl}_{\tau G}\right)\left(v^{k}\right)
\end{align*}
$$

(PRS')

Douglas-Rachford- \& Peaceman-Rachford splitting

Fixed points of DRS \& PRS:

$$
\begin{aligned}
& v=\operatorname{refl}_{\tau F}\left(\operatorname{refl}_{\tau G}(v)\right)=2 \operatorname{prox}_{\tau F}\left(\operatorname{refl}_{\tau G}(v)\right)-\operatorname{refl}_{\tau G}(v) \\
\Leftrightarrow & \operatorname{prox}_{\tau F}\left(\operatorname{refl}_{\tau G}(v)\right)=\operatorname{prox}_{\tau G}(v) \\
\Leftrightarrow & \operatorname{refl}_{\tau G}(v) \in(I+\tau \partial F)\left(\operatorname{prox}_{\tau G}(v)\right) \\
\Leftrightarrow & 2 \operatorname{prox}_{\tau G}(v)-v \in \operatorname{prox}_{\tau G}(v)+\tau \partial F\left(\operatorname{prox}_{\tau G}(v)\right) \\
\Leftrightarrow & \operatorname{prox}_{\tau G}(v)-v \in \tau \partial F\left(\operatorname{prox}_{\tau G}(v)\right) \\
\Leftrightarrow & u=\operatorname{prox}_{\tau G}(v), u-v \in \tau \partial F(u) \\
\Leftrightarrow & v \in u+\tau \partial G(u), u-v \in \tau \partial F(u) \\
\Leftrightarrow & 0 \in \partial F(u)+\partial G(u) .
\end{aligned}
$$

Interpret DRS as customized proximal iteration

- Apply DRS to: $\min _{u} F(u)+G(u) . \Rightarrow$

$$
\begin{align*}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(v^{k}\right), \tag{1}\\
v^{k+1} & =v^{k}-u^{k+1}+\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right) \tag{2}
\end{align*}
$$

Optimization Algorithms

Tao Wu
Zhenzhang Ye

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

Interpret DRS as customized proximal iteration

- Apply DRS to: $\min _{u} F(u)+G(u) . \Rightarrow$

$$
\begin{align*}
& u^{k+1}=\operatorname{prox}_{\tau G}\left(v^{k}\right), \tag{1}\\
& v^{k+1}=v^{k}-u^{k+1}+\operatorname{prox}_{\tau F}\left(2 u^{k+1}-v^{k}\right) \tag{2}
\end{align*}
$$

- DRS as customized proximal iteration $\left(p^{k}:=\left(u^{k}-v^{k}\right) / \tau\right)$:

$$
\begin{align*}
(1) & \Leftrightarrow u^{k+1}=\operatorname{prox}_{\tau G}\left(u^{k}-\tau p^{k}\right) \Leftrightarrow u^{k}-\tau p^{k} \in(I+\tau \partial G) u^{k+1} \\
& \Leftrightarrow 0 \in\left(u^{k+1}-u^{k}\right) / \tau+p^{k}+\partial G\left(u^{k+1}\right) \tag{3}\\
(2) & \Leftrightarrow 2 u^{k+1}-u^{k}+\tau p^{k}=\tau p^{k+1}+\operatorname{prox}_{\tau F}\left(2 u^{k+1}-u^{k}+\tau p^{k}\right) \\
& \Rightarrow \tau p^{k+1}=\left(I-\operatorname{prox}_{\tau F}\right)\left(2 u^{k+1}-u^{k}+\tau p^{k}\right) \\
& \Leftrightarrow p^{k+1}=\operatorname{prox}_{\frac{1}{\tau} F^{*}}\left(\left(2 u^{k+1}-u^{k}\right) / \tau+p^{k}\right) \text { by Moreau's identity } \\
& \Leftrightarrow\left(2 u^{k+1}-u^{k}\right) / \tau+p^{k} \in\left(I+\frac{1}{\tau} \partial F^{*}\right)\left(p^{k+1}\right) \\
& \Leftrightarrow 0 \in \tau\left(p^{k+1}-p^{k}\right)+\partial F^{*}\left(p^{k+1}\right)-\left(2 u^{k+1}-u^{k}\right) \tag{4}\\
\text { (3), (4) } & \Rightarrow 0 \in\left[\begin{array}{cc}
\frac{1}{\tau} I & -I \\
-I & \tau I
\end{array}\right]\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right]+\left[\begin{array}{cc}
\partial G & I \\
-I & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right] .
\end{align*}
$$

Demo: Image segmentation

- Variational model:

$$
\min _{u: \Omega \rightarrow \Delta^{L}} \sum_{j \in \Omega}\left(\delta\left\{u_{j} \in \Delta^{L}\right\}+\left\langle u_{j}, f_{j}\right\rangle\right)+\alpha \sum_{l=1}^{L}\left\|\nabla u^{\prime}\right\|_{1}
$$

where Δ^{L} is the probability simplex in \mathbb{R}^{L}.

- Segmentation results:

Gradient Methods

Proximal Algorithms
Convergence Theory
Acceleration
Summary

- Demo code in PyTorch (possibly accelerated by GPU) is provided on the course webpage.

Convergence Theory

Fixed-point iteration

Fixed-point iteration

Proximal algorithm as fixed-point iteration:

$$
u^{k+1}=\Phi\left(u^{k}\right)
$$

Its convergence depends on the property of Φ.

Gradient Methods
Proximal Algorithms

Fixed-point iteration

Fixed-point iteration

Proximal algorithm as fixed-point iteration:

$$
u^{k+1}=\Phi\left(u^{k}\right) .
$$

Its convergence depends on the property of Φ.

Definition

Let C be a nonempty, closed, convex subset of \mathbb{E} (equipped with $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$, and $\Phi: C \rightarrow \mathbb{E}$. Then Φ is:
(1) μ-Lipschitz with modulus $\mu \geq 0$ if

$$
\forall u, v \in C:\|\Phi(u)-\Phi(v)\| \leq \mu\|u-v\| .
$$

(2) contractive if Φ is μ-Lipschitz with modulus $\mu \in[0,1)$.
(3) nonexpansive if Φ is 1 -Lipschitz.

Fixed-point iteration

Definition

Let C be a nonempty, closed, convex subset of \mathbb{E} (equipped with $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$, and $\Phi: C \rightarrow \mathbb{E}$. Then Φ is:
(1) μ-Lipschitz with modulus $\mu \geq 0$ if

$$
\forall u, v \in C:\|\Phi(u)-\Phi(v)\| \leq \mu\|u-v\| .
$$

(2) contractive if Φ is μ-Lipschitz with modulus $\mu \in[0,1)$.
(3) nonexpansive if Φ is 1 -Lipschitz.

Remark

(1) If Φ is contractive (mod. $\mu \in[0,1)$), then by Banach fixed point theorem the iteration $u^{k+1}=\Phi\left(u^{k}\right)$ converges to the unique fixed point u^{*} linearly: $\left\|u^{k}-u^{*}\right\| \leq \mu^{k}\left\|u^{0}-u^{*}\right\|$.

Fixed-point iteration

Definition

Let C be a nonempty, closed, convex subset of \mathbb{E} (equipped with $\|\cdot\|=\sqrt{\langle\cdot, \cdot\rangle}$), and $\Phi: C \rightarrow \mathbb{E}$. Then Φ is:
(1) μ-Lipschitz with modulus $\mu \geq 0$ if

$$
\forall u, v \in C:\|\Phi(u)-\Phi(v)\| \leq \mu\|u-v\|
$$

(2) contractive if Φ is μ-Lipschitz with modulus $\mu \in[0,1)$.
(3) nonexpansive if Φ is 1 -Lipschitz.

Remark

(1) If Φ is contractive (mod. $\mu \in[0,1)$), then by Banach fixed point theorem the iteration $u^{k+1}=\Phi\left(u^{k}\right)$ converges to the unique fixed point u^{*} linearly: $\left\|u^{k}-u^{*}\right\| \leq \mu^{k}\left\|u^{0}-u^{*}\right\|$.
(2) Unfortunately, Banach fixed point theorem does not apply here. Most proximal algorithms consist of nonexpansive operators Φ (including proj, prox, and refl), which are not contractive but "averaged' operators".

Averaged operator

Definition

Let C be a nonempty, closed, convex subset of \mathbb{E}. Then a map $\Phi: C \rightarrow \mathbb{E}$ is α-averaged, with $\alpha \in(0,1)$, if there exists a nonexpansive operator $\psi: C \rightarrow \mathbb{E}$ such that

$$
\Phi=(1-\alpha) I+\alpha \Psi .
$$

In particular, " $\frac{1}{2}$-averaged" is also called firmly nonexpansive.

Averaged operator

Definition

Let C be a nonempty, closed, convex subset of \mathbb{E}. Then a map $\Phi: C \rightarrow \mathbb{E}$ is α-averaged, with $\alpha \in(0,1)$, if there exists a nonexpansive operator $\psi: C \rightarrow \mathbb{E}$ such that

$$
\Phi=(1-\alpha) I+\alpha \Psi .
$$

In particular, " $\frac{1}{2}$-averaged" is also called firmly nonexpansive.

Proposition

Let C be a nonempty, closed, convex subset of $\mathbb{E}, \Phi: C \rightarrow \mathbb{E}$, and $\alpha \in(0,1)$. Then the following statements are equivalent:
(1) Φ is α-averaged.
(2) $\left(1-\frac{1}{\alpha}\right) I+\frac{1}{\alpha} \Phi$ is nonexpansive.
(3) $\forall u, v \in C:\|\Phi(u)-\Phi(v)\|^{2} \leq\|u-v\|^{2}-\frac{1-\alpha}{\alpha}\|(I-\Phi)(u)-(I-\Phi)(v)\|^{2}$.
(4) $\forall u, v \in C:\|\Phi(u)-\Phi(v)\|^{2}+(1-2 \alpha)\|u-v\|^{2} \leq$ $2(1-\alpha)\langle u-v, \Phi(u)-\Phi(v)\rangle$.
Proof: on board.

Averaged operator in proximal algorithms

- Recall the customized proximal iteration:

$$
u^{k+1}=\Phi^{(\mathrm{cpi})}\left(u^{k}\right), \quad \Phi^{(\mathrm{cpi})}=(M+R)^{-1} M,
$$

for given spd matrix M and monotone operator R.

- One can verify that $\Phi^{(\text {cpi) }}$ is firmly nonexpansive under the scaled norm $\|\cdot\|_{M}=\sqrt{\langle\cdot, M \cdot\rangle}$.

Proximal Algorithms

Averaged operator in proximal algorithms

- Recall the customized proximal iteration:

$$
u^{k+1}=\Phi^{(\mathrm{cpi})}\left(u^{k}\right), \quad \Phi^{(\mathrm{cpi})}=(M+R)^{-1} M,
$$

for given spd matrix M and monotone operator R.

- One can verify that $\Phi^{(\text {cpi) })}$ is firmly nonexpansive under the scaled norm $\|\cdot\|_{M}=\sqrt{\langle\cdot, M \cdot\rangle}$.
- Recall Douglas-Rachford splitting (in compact form):

$$
v^{k+1}=\Phi^{(\mathrm{drs})}\left(v^{k}\right), \quad \Phi^{(\mathrm{drs})}=\frac{1}{2} I+\frac{1}{2} \operatorname{refl}_{\tau F} \circ \operatorname{refl}_{\tau G},
$$

for some proper, convex, Isc functions $F, G: \mathbb{E} \rightarrow \overline{\mathbb{R}}$.

- Since $\operatorname{refl}_{\tau F}=2$ prox $_{\tau F}-l$ is nonexpansive and so is refl $_{\tau G}$, $\Phi^{\text {(drs) }}$ is firmly nonexpansive.

Averaged operator in proximal algorithms

- Recall the customized proximal iteration:

$$
u^{k+1}=\Phi^{(\mathrm{cpi})}\left(u^{k}\right), \quad \Phi^{(\mathrm{cpi})}=(M+R)^{-1} M,
$$

for given spd matrix M and monotone operator R.

- One can verify that $\Phi^{(\text {cpi) })}$ is firmly nonexpansive under the scaled norm $\|\cdot\|_{M}=\sqrt{\langle\cdot, M \cdot\rangle}$.
- Recall Douglas-Rachford splitting (in compact form):

$$
v^{k+1}=\Phi^{(\mathrm{drs})}\left(v^{k}\right), \quad \Phi^{(\mathrm{drs})}=\frac{1}{2} I+\frac{1}{2} \operatorname{refl}_{\tau F} \circ \operatorname{refl}_{\tau G},
$$

for some proper, convex, Isc functions $F, G: \mathbb{E} \rightarrow \overline{\mathbb{R}}$.

- Since $\operatorname{refl}_{\tau F}=2$ prox $_{\tau F}-l$ is nonexpansive and so is $\operatorname{refl}_{\tau G}$, $\phi^{\text {(drs) }}$ is firmly nonexpansive.
- Recall forward-backward splitting:

$$
u^{k+1}=\Phi^{(\mathrm{fbs})}\left(u^{k}\right), \quad \Phi^{(\mathrm{fbs})}=\operatorname{prox}_{\tau F} \circ(I-\tau \nabla G)
$$

where \mathcal{G} is μ-Lipschitz differentiable and $\tau \in(0,2 / \mu)$.

- As a consequence of the Baillon-Haddad Theorem (next slide), $I-\tau \nabla G$ is an averaged operator. Hence, $\Phi^{(\mathrm{tbs})}$ is a composition of two averaged operators (again averaged).

Averaged operator in gradient descent

Theorem (Baillon-Haddad)

Let $J: \mathbb{E} \rightarrow \mathbb{R}$ be a convex, continuously differentiable function. Then ∇J is a nonexpansive operator iff ∇J is firmly nonexpansive.
Proof: on board.

Optimization Algorithms

Tao Wu
Zhenzhang Ye

Gradient Methods
Proximal Algorithms

Averaged operator in gradient descent

Theorem (Baillon-Haddad)

Let $J: \mathbb{E} \rightarrow \mathbb{R}$ be a convex, continuously differentiable function. Then ∇J is a nonexpansive operator iff ∇J is firmly nonexpansive.
Proof: on board.

Corollary

Assume $G: \mathbb{E} \rightarrow \mathbb{R}$ is convex and μ-Lipschitz differentiable, and $\tau=2 \alpha / \mu$ with $\alpha \in(0,1)$. Then $I-\tau \nabla G$ is α-averaged.

Averaged operator in gradient descent

Theorem (Baillon-Haddad)

Let $J: \mathbb{E} \rightarrow \mathbb{R}$ be a convex, continuously differentiable function. Then ∇J is a nonexpansive operator iff ∇J is firmly nonexpansive.
Proof: on board.

Corollary

Assume $G: \mathbb{E} \rightarrow \mathbb{R}$ is convex and μ-Lipschitz differentiable, and $\tau=2 \alpha / \mu$ with $\alpha \in(0,1)$. Then $I-\tau \nabla G$ is α-averaged. Proof: Since $\frac{1}{\mu} \nabla G$ is nonexpansive, by the Baillon-Haddad theorem, $\frac{1}{\mu} \nabla G$ is firmly nonexpansive, i.e., $\exists \Psi: \mathbb{E} \rightarrow \mathbb{E}$ nonexpansive s.t. $\frac{1}{\mu} \nabla G=\frac{1}{2} I+\frac{1}{2} \psi$. Hence,

$$
I-\tau \nabla G=\left(1-\frac{\tau \mu}{2}\right) I-\frac{\tau \mu}{2} \psi=(1-\alpha) I+\alpha(-\psi)
$$

i.e. $I-\tau \nabla G$ is α-averaged.

Composition of averaged operators

In forward-backward splitting,

$$
\Phi^{(\mathrm{fbs})}=\operatorname{prox}_{\tau F^{\circ}} \circ\left(I-\frac{2 \alpha}{\mu} \nabla G\right)
$$

appears as the composition of a $\frac{1}{2}$-averaged operator prox $_{\tau F}$ and an α-averaged operator $I-\frac{2 \alpha}{\mu} \nabla G$ with $\alpha \in(0,1)$.

Gradient Methods
Proximal Algorithms

Composition of averaged operators

In forward-backward splitting,

$$
\Phi^{(\mathrm{fbs})}=\operatorname{prox}_{\tau F} \circ\left(I-\frac{2 \alpha}{\mu} \nabla G\right)
$$

appears as the composition of a $\frac{1}{2}$-averaged operator $\operatorname{prox}_{\tau F}$ and an α-averaged operator $I-\frac{2 \alpha}{\mu} \nabla G$ with $\alpha \in(0,1)$.

Gradient Methods
Proximal Algorithms

Theorem (composition of averaged operators)

Let C be a nonempty, closed, convex subset of \mathbb{E}. For each $i \in\{1, \ldots, m\}$, let $\alpha_{i} \in(0,1)$ and $\Phi_{i}: C \rightarrow C$ be an α_{i}-averaged operator. Then

$$
\Phi=\Phi_{m} \circ \ldots \circ \Phi_{1}
$$

is α-averaged with

$$
\alpha=\frac{m}{m-1+\frac{1}{\max _{1 \leq i \leq m} \alpha_{i}}}
$$

Proof: on board.

Convex combination of averaged operators

Theorem (convex combination of averaged operators)

Let C be a nonempty, closed, convex subset of \mathbb{E}. For each $i \in\{1, \ldots, m\}$, let $\alpha_{i} \in(0,1), \omega_{i} \in(0,1)$ and $\Phi_{i}: C \rightarrow \mathbb{E}$ be an α_{i}-averaged operator. If $\sum_{i=1}^{m} \omega_{i}=1$ and $\alpha=\max _{1 \leq i \leq m} \alpha_{i}$, then

$$
\Phi=\sum_{i=1}^{m} \omega_{i} \Phi_{i}
$$

is α-averaged.
Proof: as exercise.

Convergence of averaged-operator iterations

Theorem (Krasnoselskii)

Let C be a nonempty, closed, convex subset of \mathbb{E}, and $u^{k+1}=\Phi\left(u^{k}\right)$ for $k=0,1,2, \ldots$ where $\Phi: C \rightarrow C$ satisfies:
(1) Φ is α-averaged for some $\alpha \in(0,1)$.
(2) Φ has at least one fixed point.

Then $\left\{u^{k}\right\}$ converges to a fixed point of Φ.
Proof: on board.

Gradient Methods

Proximal Algorithms

Extension of Krasnoselskii Theorem

Theorem (Krasnoselskii-Mann)

Let C be a nonempty, closed, convex subset of \mathbb{E}, and $u^{k+1}=\left(1-\tau^{k}\right) u^{k}+\tau^{k} \Psi\left(u^{k}\right)$ for $k=0,1,2, \ldots$ where $\left\{\tau^{k}\right\} \subset[0,1]$ s.t.

$$
\sum_{k=0}^{\infty} \tau^{k}\left(1-\tau^{k}\right)=\infty
$$

and $\Psi: C \rightarrow C$ satisfies:
(1) ψ is nonexpansive.
(2) ψ has at least one fixed point.

Then the sequence $\left\{u^{k}\right\}$ converges to a fixed point of ψ. Proof: on board.

Extension of Krasnoselskii Theorem

Theorem (Krasnoselskii-Mann)

Let C be a nonempty, closed, convex subset of \mathbb{E}, and $u^{k+1}=\left(1-\tau^{k}\right) u^{k}+\tau^{k} \Psi\left(u^{k}\right)$ for $k=0,1,2, \ldots$ where $\left\{\tau^{k}\right\} \subset[0,1]$ s.t.

$$
\sum_{k=0}^{\infty} \tau^{k}\left(1-\tau^{k}\right)=\infty
$$

and $\Psi: C \rightarrow C$ satisfies:
(1) ψ is nonexpansive.
(2) Ψ has at least one fixed point.

Then the sequence $\left\{u^{k}\right\}$ converges to a fixed point of ψ.
Proof: on board.

Remarks

(1) Condition $\sum_{k=0}^{\infty} \tau^{k}\left(1-\tau^{k}\right)=\infty$ is fulfilled if $\left\{\tau^{k}\right\} \subset[\epsilon, 1-\epsilon]$ for some $\epsilon \in(0,1 / 2]$.
(2) Decay rate of fixed-point residual: $\left\|u^{k+1}-u^{k}\right\|=o(1 / \sqrt{k})$.

Convergence in infinite dimensional space

Theorem (Krasnoselskii in Hilbert space)

Let C be a nonempty, closed, convex subset of a (real) Hilbert space \mathbb{H}, and $u^{k+1}=\Phi\left(u^{k}\right)$ for $k=0,1,2, \ldots$ where $\Phi: C \rightarrow C$ satisfies:
(1) Φ is α-averaged for some $\alpha \in(0,1)$.
(2) Φ has at least one fixed point.

Then $\left\{u^{k}\right\}$ converges weakly to a fixed point of Φ.

Gradient Methods
Proximal Algorithms

Convergence in infinite dimensional space

Theorem (Krasnoselskii in Hilbert space)

Let C be a nonempty, closed, convex subset of a (real) Hilbert space \mathbb{H}, and $u^{k+1}=\Phi\left(u^{k}\right)$ for $k=0,1,2, \ldots$ where $\Phi: C \rightarrow C$ satisfies:
(1) Φ is α-averaged for some $\alpha \in(0,1)$.
(2) Φ has at least one fixed point.

Then $\left\{u^{k}\right\}$ converges weakly to a fixed point of Φ.
Proof: $\ldots \Rightarrow\left\|u^{k+1}-\bar{u}\right\|^{2} \leq\left\|u^{0}-\bar{u}\right\|^{2}-\frac{1-\alpha}{\alpha} \sum_{l=0}^{k}\left\|(I-\Phi)\left(u^{\prime}\right)\right\|^{2}$ \Rightarrow (i) $\left\|u^{k}-\bar{u}\right\| \searrow c \geq 0$; (ii) $\sum_{k=0}^{\infty}\left\|(I-\Phi)\left(u^{k}\right)\right\|^{2}<\infty$.
(i) $\Rightarrow\left\{u^{k}\right\}$ converges weakly to $u^{*} \in C$ along a subsequence;
(ii) \& "demiclosedness principle" $\Rightarrow u^{*}-\Phi\left(u^{*}\right)=0 . \quad \Rightarrow \ldots \quad \square$

Lemma (demiclosedness principle)

Let C be a nonempty, closed, convex subset of a (real) Hilbert space \mathbb{H}, and $\Phi: C \rightarrow \mathbb{H}$ be nonexpansive. For any sequence $\left\{u^{k}\right\} \subset C$ s.t. $\left\{u^{k}\right\}$ weakly converges to $u \in C$ and $u^{k}-\Phi\left(u^{k}\right)$ strongly converges to $v \in \mathbb{H}$, we have $u-\Phi(u)=v$.

Linear convergence under strong monotonicity

- Recall the customized proximal iteration:

$$
0 \in M\left(u^{k+1}-u^{k}\right)+R\left(u^{k+1}\right)
$$

where M is spd matrix, R is (maximal) monotone operator.

Linear convergence under strong monotonicity

- Recall the customized proximal iteration:

$$
0 \in M\left(u^{k+1}-u^{k}\right)+R\left(u^{k+1}\right)
$$

where M is spd matrix, R is (maximal) monotone operator.

- Let $u^{*}=\lim _{k \rightarrow \infty} u^{k}, 0 \in R\left(u^{*}\right)$, and $\xi^{k+1} \in R\left(u^{k+1}\right)$ s.t.

$$
\begin{aligned}
0= & \left\langle u^{k+1}-u^{*}, u^{k+1}-u^{k}\right\rangle_{M}+\left\langle u^{k+1}-u^{*}, \xi^{k+1}-0\right\rangle \\
= & \frac{1}{2}\left\|u^{k+1}-u^{*}\right\|_{M}^{2}-\frac{1}{2}\left\|u^{k}-u^{*}\right\|_{M}^{2}+\frac{1}{2}\left\|u^{k+1}-u^{k}\right\|_{M}^{2} \\
& +\left\langle u^{k+1}-u^{*}, \xi^{k+1}-0\right\rangle .
\end{aligned}
$$

Linear convergence under strong monotonicity

- Recall the customized proximal iteration:

$$
0 \in M\left(u^{k+1}-u^{k}\right)+R\left(u^{k+1}\right)
$$

where M is spd matrix, R is (maximal) monotone operator.

- Let $u^{*}=\lim _{k \rightarrow \infty} u^{k}, 0 \in R\left(u^{*}\right)$, and $\xi^{k+1} \in R\left(u^{k+1}\right)$ s.t.

$$
\begin{aligned}
0= & \left\langle u^{k+1}-u^{*}, u^{k+1}-u^{k}\right\rangle_{M}+\left\langle u^{k+1}-u^{*}, \xi^{k+1}-0\right\rangle \\
= & \frac{1}{2}\left\|u^{k+1}-u^{*}\right\|_{M}^{2}-\frac{1}{2}\left\|u^{k}-u^{*}\right\|_{M}^{2}+\frac{1}{2}\left\|u^{k+1}-u^{k}\right\|_{M}^{2} \\
& +\left\langle u^{k+1}-u^{*}, \xi^{k+1}-0\right\rangle .
\end{aligned}
$$

- Previously, we only assume R is monotone

$$
\begin{aligned}
& \Rightarrow\left\langle u^{k+1}-u^{*}, \xi^{k+1}-0\right\rangle \geq 0 \\
& \Rightarrow \frac{1}{2}\left\|u^{k+1}-u^{*}\right\|_{M}^{2} \leq \frac{1}{2}\left\|u^{k}-u^{*}\right\|_{M}^{2}-\frac{1}{2}\left\|u^{k+1}-u^{k}\right\|_{M}^{2}
\end{aligned}
$$

- Next we shall assume R is "strongly monotone".

Linear convergence under strong monotonicity

Strongly monotone operator

- R is said μ-strongly monotone if $R-\mu I$ is monotone.
- For proper, convex, Isc function $J, \partial J$ is μ-strongly monotone iff J is μ-strongly convex, i.e., $J-\frac{\mu}{2}\|\cdot\|^{2}$ is convex.

Linear convergence under strong monotonicity

Strongly monotone operator

- R is said μ-strongly monotone if $R-\mu I$ is monotone.
- For proper, convex, Isc function $J, \partial J$ is μ-strongly monotone iff J is μ-strongly convex, i.e., $J-\frac{\mu}{2}\|\cdot\|^{2}$ is convex.
- R is μ-strongly monotone

$$
\begin{aligned}
\Rightarrow & \left\langle u^{k+1}-u^{*}, \xi^{k+1}-0\right\rangle \geq \mu\left\|u^{k+1}-u^{*}\right\|^{2} \\
\Rightarrow & \left(\frac{1}{2}+\frac{\mu}{\lambda_{\max }(M)}\right)\left\|u^{k+1}-u^{*}\right\|_{M}^{2} \\
& \leq \frac{1}{2}\left\|u^{k+1}-u^{*}\right\|_{M}^{2}+\mu\left\|u^{k+1}-u^{*}\right\|^{2} \leq \frac{1}{2}\left\|u^{k}-u^{*}\right\|_{M}^{2} \\
\Rightarrow & \left\|u^{k+1}-u^{*}\right\|_{M} \leq \sqrt{\frac{1}{1+2 \mu / \lambda_{\max }(M)}}\left\|u^{k}-u^{*}\right\|_{M} .
\end{aligned}
$$

Linear convergence under strong monotonicity

Strongly monotone operator

- R is said μ-strongly monotone if $R-\mu I$ is monotone.
- For proper, convex, Isc function $J, \partial J$ is μ-strongly monotone iff J is μ-strongly convex, i.e., $J-\frac{\mu}{2}\|\cdot\|^{2}$ is convex.
- R is μ-strongly monotone

$$
\begin{aligned}
\Rightarrow & \left\langle u^{k+1}-u^{*}, \xi^{k+1}-0\right\rangle \geq \mu\left\|u^{k+1}-u^{*}\right\|^{2} \\
\Rightarrow & \left(\frac{1}{2}+\frac{\mu}{\lambda_{\max }(M)}\right)\left\|u^{k+1}-u^{*}\right\|_{M}^{2} \\
& \leq \frac{1}{2}\left\|u^{k+1}-u^{*}\right\|_{M}^{2}+\mu\left\|u^{k+1}-u^{*}\right\|^{2} \leq \frac{1}{2}\left\|u^{k}-u^{*}\right\|_{M}^{2} \\
\Rightarrow & \left\|u^{k+1}-u^{*}\right\|_{M} \leq \sqrt{\frac{1}{1+2 \mu / \lambda_{\max }(M)}}\left\|u^{k}-u^{*}\right\|_{M} .
\end{aligned}
$$

- Recall in PDHG:

$$
R=\left[\begin{array}{cc}
\partial G & K^{\top} \\
-K & \partial F^{*}
\end{array}\right]
$$

R is μ-strongly monotone $\Leftrightarrow G, F^{*}$ are μ-strongly convex; F^{*} is μ-strongly convex $\Leftrightarrow F$ is $\frac{1}{\mu}$-Lipschitz differentiable.

Acceleration Techniques

Gradient Methods
Proximal Algorithms
Convergence Theory

Acceleration

Summary

Outline of the section

(1) Accelerating gradient step:

- Second-order methods (Newton).
- Multistep methods:
- Heavy-ball method (Polyak).
- Accelerated gradient method (Nesterov).
- Embedding acceleration into proximal algorithms.
(2) Preconditioning proximal algorithms:
- Preconditioned PDHG algorithm.
- Diagonal preconditioners (Pock/Chambolle).
- Application to problems on weighted graphs.

Newton's method

- Consider minimizing $J: \mathbb{E} \rightarrow \mathbb{R}$. J is convex and twice continuously differentiable.
- Classical Newton method:

$$
d^{k}=-\left[\nabla^{2} J\left(u^{k}\right)\right]^{-1} \nabla J\left(u^{k}\right), \quad u^{k+1}=u^{k}+d^{k}
$$

- ..., which minimizes the local quadratic model:

$$
d^{k}=\arg \min _{d} J\left(u^{k}\right)+\left\langle\nabla J\left(u^{k}\right), d\right\rangle+\frac{1}{2}\left\langle d, \nabla^{2} J\left(u^{k}\right) d\right\rangle .
$$

Newton's method

- Consider minimizing $J: \mathbb{E} \rightarrow \mathbb{R}$. J is convex and twice continuously differentiable.
- Classical Newton method:

$$
d^{k}=-\left[\nabla^{2} J\left(u^{k}\right)\right]^{-1} \nabla J\left(u^{k}\right), \quad u^{k+1}=u^{k}+d^{k}
$$

- ..., which minimizes the local quadratic model:

$$
d^{k}=\arg \min _{d} J\left(u^{k}\right)+\left\langle\nabla J\left(u^{k}\right), d\right\rangle+\frac{1}{2}\left\langle d, \nabla^{2} J\left(u^{k}\right) d\right\rangle .
$$

- Local quadratic convergence near u^{*}, where $\nabla J\left(u^{*}\right)=0$ and $\nabla^{2} J\left(u^{*}\right)$ is spd:

$$
\begin{aligned}
& \left\|u^{k+1}-u^{*}\right\|=\left\|u^{k}-u^{*}-\left[\nabla^{2} J\left(u^{k}\right)\right]^{-1} \nabla J\left(u^{k}\right)\right\| \\
& \leq\left\|\left[\nabla^{2} J\left(u^{k}\right)\right]^{-1}\right\|\left\|\nabla^{2} J\left(u^{k}\right)\left(u^{k}-u^{*}\right)-\left(\nabla J\left(u^{k}\right)-\nabla J\left(u^{*}\right)\right)\right\| \\
& =O\left(\left\|u^{k}-u^{*}\right\|^{2}\right) .
\end{aligned}
$$

- Can we use Newton step in proximal gradient method?

Proximal Newton method

$$
\min _{u \in \mathbb{E}} F(u)+G(u)
$$

where F is convex (possibly non-differentiable), G is convex and twice continuously differentiable.

Proximal Newton method

Initialize $u^{0} \in \mathbb{E}$. Iterate with $k=0,1,2, \ldots$
(1) $d^{k}=\arg \min _{d} F\left(u^{k}+d\right)+\left\langle\nabla G\left(u^{k}\right), d\right\rangle+\frac{1}{2}\left\langle d, \nabla^{2} G\left(u^{k}\right) d\right\rangle$.
(2) $u^{k+1}=u^{k}+d^{k}$.

Gradient Methods

Proximal Algorithms
Convergence Theory

Acceleration

Summary

Proximal Newton method

$$
\min _{u \in \mathbb{E}} F(u)+G(u)
$$

where F is convex (possibly non-differentiable), G is convex and twice continuously differentiable.

Proximal Newton method

Initialize $u^{0} \in \mathbb{E}$. Iterate with $k=0,1,2, \ldots$
(1) $d^{k}=\arg \min _{d} F\left(u^{k}+d\right)+\left\langle\nabla G\left(u^{k}\right), d\right\rangle+\frac{1}{2}\left\langle d, \nabla^{2} G\left(u^{k}\right) d\right\rangle$.
(2) $u^{k+1}=u^{k}+d^{k}$.

Theorem (local quadratic convergence of proximal Newton)

The proximal Newton method converges locally quadratically to the (global) minimizer u^{*} if $\nabla^{2} G\left(u^{*}\right)$ is spd.
Proof: on board.

Proximal Newton method

$$
\min _{u \in \mathbb{E}} F(u)+G(u),
$$

where F is convex (possibly non-differentiable), G is convex and twice continuously differentiable.

Proximal Newton method

Initialize $u^{0} \in \mathbb{E}$. Iterate with $k=0,1,2, \ldots$
(1) $d^{k}=\arg \min _{d} F\left(u^{k}+d\right)+\left\langle\nabla G\left(u^{k}\right), d\right\rangle+\frac{1}{2}\left\langle d, \nabla^{2} G\left(u^{k}\right) d\right\rangle$.
(2) $u^{k+1}=u^{k}+d^{k}$.

Theorem (local quadratic convergence of proximal Newton)

The proximal Newton method converges locally quadratically to the (global) minimizer u^{*} if $\nabla^{2} G\left(u^{*}\right)$ is spd.
Proof: on board.

Remark

(1) Ensure global convergence via backtracking line search.
(2) Computation of d^{k} can be involved even if prox ${ }_{F}$ is easy.

Heavy-ball (momentum) acceleration

Heavy-ball method

Assume J is convex and differentiable. Initialize $u^{0} \in \mathbb{E}$ and $u^{-1}=u^{0}$. Iterate with step sizes $\tau, \theta>0$:

$$
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)+\theta\left(u^{k}-u^{k-1}\right)
$$

Heavy-ball (momentum) acceleration

Heavy-ball method

Assume J is convex and differentiable. Initialize $u^{0} \in \mathbb{E}$ and $u^{-1}=u^{0}$. Iterate with step sizes $\tau, \theta>0$:

$$
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)+\theta\left(u^{k}-u^{k-1}\right) .
$$

- Invented by [Polyak, 1964]; $u^{k}-u^{k-1}$ is the momentum.
- Discretization of the 2nd-order ODE:

$$
\theta \ddot{u}+(1-\theta) \dot{u}+\tau \nabla J(u)=0 .
$$

- Alternative form implemented in machine learning:

$$
\begin{aligned}
& v^{k+1}=\theta v^{k}-\tau \nabla J\left(u^{k}\right), \\
& u^{k+1}=u^{k}+v^{k+1}
\end{aligned}
$$

Figure: gradient descent (left) vs. heavy ball (right).

Heavy-ball method

- Quantitative analysis of heavy-ball method:

$$
\begin{gathered}
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)+\theta\left(u^{k}-u^{k-1}\right) . \\
{\left[\begin{array}{c}
u^{k+1}-u^{*} \\
u^{k}-u^{*}
\end{array}\right]=\left[\begin{array}{c}
u^{k}+\theta\left(u^{k}-u^{k-1}\right)-u^{*}-\tau\left(\nabla J\left(u^{k}\right)-\nabla J\left(u^{*}\right)\right) \\
u^{k}-u^{*}
\end{array}\right]} \\
=\left[\begin{array}{c}
u^{k}+\theta\left(u^{k}-u^{k-1}\right)-u^{*}-\tau \nabla^{2} J\left(\widetilde{u}^{k}\right)\left(u^{k}-u^{*}\right) \\
u^{k}-u^{*}
\end{array}\right] \quad\left(\widetilde{u}^{k} \in\left[u^{k}, u^{*}\right]\right) \\
=\left[\begin{array}{cc}
(1+\theta) I-\tau \nabla^{2} J\left(\widetilde{u}^{k}\right) & -\theta I \\
l & 0
\end{array}\right]\left[\begin{array}{c}
u^{k}-u^{*} \\
u^{k-1}-u^{*}
\end{array}\right]=: A^{k}\left[\begin{array}{c}
u^{k}-u^{*} \\
u^{k-1}-u^{*}
\end{array}\right] .
\end{gathered}
$$

Heavy-ball method

- Quantitative analysis of heavy-ball method:

$$
\begin{gathered}
u^{k+1}=u^{k}-\tau \nabla J\left(u^{k}\right)+\theta\left(u^{k}-u^{k-1}\right) . \\
{\left[\begin{array}{c}
u^{k+1}-u^{*} \\
u^{k}-u^{*}
\end{array}\right]=\left[\begin{array}{c}
u^{k}+\theta\left(u^{k}-u^{k-1}\right)-u^{*}-\tau\left(\nabla J\left(u^{k}\right)-\nabla J\left(u^{*}\right)\right) \\
u^{k}-u^{*}
\end{array}\right]} \\
=\left[\begin{array}{c}
u^{k}+\theta\left(u^{k}-u^{k-1}\right)-u^{*}-\tau \nabla^{2} J\left(\widetilde{u}^{k}\right)\left(u^{k}-u^{*}\right) \\
u^{k}-u^{*}
\end{array}\right] \quad\left(\widetilde{u}^{k} \in\left[u^{k}, u^{*}\right]\right) \\
=\left[\begin{array}{cc}
(1+\theta) I-\tau \nabla^{2} J\left(\widetilde{u}^{k}\right) & -\theta I \\
I & 0
\end{array}\right]\left[\begin{array}{c}
u^{k}-u^{*} \\
u^{k-1}-u^{*}
\end{array}\right]=: A^{k}\left[\begin{array}{c}
u^{k}-u^{*} \\
u^{k-1}-u^{*}
\end{array}\right] .
\end{gathered}
$$

Gradient Methods
Proximal Algorithms
Convergence Theory

- Lemma: Assume $\forall k: \operatorname{sr}\left(A^{k}\right) \leq \rho$, then $\exists \epsilon_{k} \rightarrow 0^{+}$s.t. $\left\|A^{k} A^{k-1} \cdots A^{0}\right\| \leq\left(\rho+\epsilon_{k}\right)^{k} \forall k . \quad$ (sr $=$ spectral radius)

Theorem

Assume $\forall k: \mu I \preceq \nabla^{2} J\left(\widetilde{u}^{k}\right) \preceq L /$ for some constants $\mu, L>0$. If $\theta \geq \max \{|1-\sqrt{\tau \mu}|,|1-\sqrt{\tau L}|\}^{2}$, then $\operatorname{sr}\left(A^{k}\right)=\sqrt{\theta} \quad \forall k$.
Proof: on board.

- Apply the theorem with $\tau=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}, \theta=\left(\frac{\sqrt{L / \mu}-1}{\sqrt{L / \mu}+1}\right)^{2}$
\Rightarrow asymptotic rate $\rho=\frac{\sqrt{L / \mu}-1}{\sqrt{L / \mu}+1}$.

Nesterov's Accelerated gradient method

Minimize J that is convex and continuously differentiable. Assume ∇J is L-Lipschitz continuous.

Accelerated gradient method

Initialize $u^{0} \in \mathbb{E}$, and $u^{-1}=u^{0}, \beta^{0}=1$. Iterate with step size $0<\tau \leq 1 / L$:
(1) $\beta^{k+1}=\left(1+\sqrt{1+4\left(\beta^{k}\right)^{2}}\right) / 2, \theta^{k}=\left(\beta^{k}-1\right) / \beta^{k+1}$.
(2) $v^{k}=u^{k}+\theta^{k}\left(u^{k}-u^{k-1}\right)$.
(3) $u^{k+1}=v^{k}-\tau \nabla J\left(v^{k}\right)$.

- Originated from [Nesterov, 1983].
- The gradient is evaluated at the extrapolated point v^{k}.
- The analysis of this scheme is somewhat technical.

Multistep proximal gradient method

We embed multistep acceleration into proximal gradient for:

$$
\min _{u \in \mathbb{E}} F(u)+G(u),
$$

where F is convex (possibly non-differentiable), G is convex and twice continuously differentiable, and $\mu \mathrm{I} \preceq \nabla^{2} G(\cdot) \preceq L I$.

Proximal heavy-ball method

Initialize $u^{0} \in \mathbb{E}$, and set $u^{-1}=u^{0}, \tau=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}, \theta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$. Iterate with $k=0,1,2, \ldots$

$$
u^{k+1}=\operatorname{prox}_{\tau F}\left(u^{k}-\tau \nabla G\left(u^{k}\right)+\theta\left(u^{k}-u^{k-1}\right)\right)
$$

Multistep proximal gradient method

We embed multistep acceleration into proximal gradient for:

$$
\min _{u \in \mathbb{E}} F(u)+G(u)
$$

where F is convex (possibly non-differentiable), G is convex and twice continuously differentiable, and $\mu I \preceq \nabla^{2} G(\cdot) \preceq L I$.

Proximal heavy-ball method

Initialize $u^{0} \in \mathbb{E}$, and set $u^{-1}=u^{0}, \tau=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}, \theta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}$.
Iterate with $k=0,1,2, \ldots$

$$
u^{k+1}=\operatorname{prox}_{\tau F}\left(u^{k}-\tau \nabla G\left(u^{k}\right)+\theta\left(u^{k}-u^{k-1}\right)\right)
$$

Proximal accelerated gradient method

Initialize $u^{0} \in \mathbb{E}$, and set $u^{-1}=u^{0}, \beta^{0}=1,0<\tau \leq 1 / L$. Iterate with $k=0,1,2, \ldots$
(1) $\beta^{k+1}=\left(1+\sqrt{1+4\left(\beta^{k}\right)^{2}}\right) / 2, \theta^{k}=\left(\beta^{k}-1\right) / \beta^{k+1}$.
(2) $v^{k}=u^{k}+\theta^{k}\left(u^{k}-u^{k-1}\right)$.
(3) $u^{k+1}=\operatorname{prox}_{\tau F}\left(v^{k}-\tau \nabla G\left(v^{k}\right)\right)$.

Preconditioning iterative linear solvers

- Consider solving the linear system

$$
Q u=b \quad \Leftrightarrow \quad \min _{u} \frac{1}{2}\langle u, Q u\rangle-\langle b, u\rangle,
$$

where $b \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n \times n}$ is spd.

Optimization Algorithms

Tao Wu
Zhenzhang Ye

Preconditioning iterative linear solvers

- Consider solving the linear system

$$
Q u=b \quad \Leftrightarrow \quad \min _{u} \frac{1}{2}\langle u, Q u\rangle-\langle b, u\rangle
$$

where $b \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n \times n}$ is spd.

- Define the condition number $\kappa_{Q}=\frac{\lambda_{\max }(Q)}{\lambda_{\min }(Q)}$, then
- Convergence rate for steepest descent: $\frac{\kappa_{Q}-1}{\kappa_{Q}+1}$.
- Convergence rate for conjugate gradient: $\frac{\sqrt{\kappa_{Q}}-1}{\sqrt{\kappa_{Q}}+1}$.

Preconditioning iterative linear solvers

- Consider solving the linear system

$$
Q u=b \quad \Leftrightarrow \quad \min _{u} \frac{1}{2}\langle u, Q u\rangle-\langle b, u\rangle,
$$

where $b \in \mathbb{R}^{n}, Q \in \mathbb{R}^{n \times n}$ is spd.

- Define the condition number $\kappa_{Q}=\frac{\lambda_{\max }(Q)}{\lambda_{\min }(Q)}$, then
- Convergence rate for steepest descent: $\frac{\kappa_{Q}-1}{\kappa_{Q}+1}$.
- Convergence rate for conjugate gradient: $\frac{\sqrt{\kappa_{Q}}-1}{\sqrt{\kappa_{Q}}+1}$.
- Preconditioning (or rescaling) with spd $M \in \mathbb{R}^{n \times n}$:

$$
\left\{\begin{array}{l}
\widehat{Q}=M^{-1 / 2} Q M^{-1 / 2}, \widehat{u}=M^{1 / 2} u, \widehat{b}=M^{-1 / 2} b \\
\text { Solve: } \min _{\widehat{u}} \frac{1}{2}\langle\widehat{u}, \widehat{Q} \widehat{u}\rangle-\langle\widehat{b}, \widehat{u}\rangle, \text { ideally with } \kappa_{\widehat{Q}} \ll \kappa_{Q}
\end{array}\right.
$$

Figure: Steepest descent: without precond. vs. with precond.

Preconditioning PDHG

- Recall the saddle-point problem:

$$
\max _{p} \min _{u}\langle p, K u\rangle+G(u)-F^{*}(p)
$$

- Recall the scaled PDHG:

$$
\begin{aligned}
& \left.0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+S\left(u^{k+1}-u^{k}\right), \quad \text { \{primal update }\right\} \\
& \left.0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+T\left(p^{k+1}-p^{k}\right) . \quad \text { \{dual update }\right\}
\end{aligned}
$$

- Compact-form PDHG:

$$
0 \in\left[\begin{array}{cc}
S & -K^{\top} \\
-K & T
\end{array}\right]\left(\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]-\left[\begin{array}{c}
u^{k} \\
p^{k}
\end{array}\right]\right)+\left[\begin{array}{cc}
\partial G & K^{\top} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right] .
$$

Preconditioning PDHG

- Recall the saddle-point problem:

$$
\max _{p} \min _{u}\langle p, K u\rangle+G(u)-F^{*}(p)
$$

- Recall the scaled PDHG:

$$
\begin{aligned}
& \left.0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+S\left(u^{k+1}-u^{k}\right), \quad \text { \{primal update }\right\} \\
& \left.0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+T\left(p^{k+1}-p^{k}\right) . \quad \text { \{dual update }\right\}
\end{aligned}
$$

- Compact-form PDHG:

$$
0 \in\left[\begin{array}{cc}
S & -K^{\top} \\
-K & T
\end{array}\right]\left(\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right]-\left[\begin{array}{l}
u^{k} \\
p^{k}
\end{array}\right]\right)+\left[\begin{array}{cc}
\partial G & K^{\top} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right] .
$$

- Here S is primal preconditioner, T is dual preconditioner:

$$
\left\{\begin{array}{l}
\widehat{u}=S^{1 / 2} u, \widehat{p}=T^{1 / 2} p, \widehat{K}=T^{-1 / 2} K S^{-1 / 2} \\
\widehat{G}=G \circ S^{-1 / 2}, \widehat{F}=F \circ T^{1 / 2} \\
\text { Solve: } \max _{\widehat{p}} \min _{\widehat{u}}\langle\widehat{p}, \widehat{K} \widehat{u}\rangle+\widehat{G}(\widehat{u})-\widehat{F}^{*}(\widehat{p})
\end{array}\right.
$$

Preconditioning PDHG

- Here S is primal preconditioner, T is dual preconditioner:

$$
\left\{\begin{array}{l}
\widehat{u}=S^{1 / 2} u, \widehat{p}=T^{1 / 2} p, \widehat{K}=T^{-1 / 2} K S^{-1 / 2} \\
\widehat{G}=G \circ S^{-1 / 2}, \widehat{F}=F \circ T^{1 / 2} \\
\text { Solve: } \max _{\widehat{p}} \min _{\widehat{u}}\langle\widehat{p}, \widehat{K} \widehat{u}\rangle+\widehat{G}(\widehat{u})-\widehat{F}^{*}(\widehat{p})
\end{array}\right.
$$

- PDHG on $(\widehat{u}, \widehat{p})$:

$$
\begin{aligned}
& 0 \in \partial \widehat{G}\left(\widehat{u}^{k+1}\right)+\widehat{K}^{\top} \widehat{p}^{k}+\left(\widehat{u}^{k+1}-\widehat{u}^{k}\right), \\
& 0 \in \partial \widehat{F}^{*}\left(\widehat{p}^{k+1}\right)-\widehat{K}\left(2 \widehat{u}^{k+1}-\widehat{u}^{k}\right)+\left(\widehat{p}^{k+1}-\widehat{p}^{k}\right) .
\end{aligned}
$$

- Compact-form PDHG on $(\widehat{u}, \widehat{p})$:

$$
0 \in\left[\begin{array}{cc}
l & -\widehat{K}^{\top} \\
-\widehat{K} & l
\end{array}\right]\left(\left[\begin{array}{c}
\widehat{u}^{k+1} \\
\hat{p}^{k+1}
\end{array}\right]-\left[\begin{array}{c}
\widehat{u}^{k} \\
\hat{p}^{k}
\end{array}\right]\right)+\left[\begin{array}{cc}
\partial \widehat{G} & \widehat{K}^{\top} \\
-\widehat{K} & \partial \widehat{F}^{*}
\end{array}\right]\left[\begin{array}{c}
\hat{u}^{k+1} \\
\widehat{p}^{k+1}
\end{array}\right] .
$$

Preconditioning PDHG

- Here S is primal preconditioner, T is dual preconditioner:

$$
\left\{\begin{array}{l}
\widehat{u}=S^{1 / 2} u, \widehat{p}=T^{1 / 2} p, \widehat{K}=T^{-1 / 2} K S^{-1 / 2} \\
\widehat{G}=G \circ S^{-1 / 2}, \widehat{F}=F \circ T^{1 / 2} \\
\text { Solve: } \max _{\widehat{p}} \min _{\widehat{u}}\langle\widehat{p}, \widehat{K} \widehat{u}\rangle+\widehat{G}(\widehat{u})-\widehat{F}^{*}(\widehat{p})
\end{array}\right.
$$

- Compact-form PDHG on $(\widehat{u}, \widehat{p})$:

$$
0 \in\left[\begin{array}{cc}
I & -\widehat{K}^{\top} \\
-\widehat{K} & I
\end{array}\right]\left(\left[\begin{array}{l}
\widehat{u}^{k+1} \\
\hat{p}^{k+1}
\end{array}\right]-\left[\begin{array}{c}
\widehat{u}^{k} \\
\hat{p}^{k}
\end{array}\right]\right)+\left[\begin{array}{cc}
\partial \widehat{G} & \widehat{K}^{\top} \\
-\widehat{K} & \partial \widehat{F}^{*}
\end{array}\right]\left[\begin{array}{l}
\hat{u}^{k+1} \\
\widehat{p}^{k+1}
\end{array}\right] .
$$

Proposition

Assume S, T are spd matrices. Then

$$
\begin{aligned}
& M_{S, T}=\left[\begin{array}{cc}
S & -K^{\top} \\
-K & T
\end{array}\right] \succ 0 \Leftrightarrow\left[\begin{array}{cc}
1 & -\widehat{K}^{\top} \\
-\widehat{K} & I
\end{array}\right] \succ 0 \\
& \Leftrightarrow\left\|T^{-1 / 2} K S^{-1 / 2}\right\|<1 .
\end{aligned}
$$

Proof: Argue with Schur complement.

Choices of preconditioners

- Scaled PDHG:

$$
\left\{\begin{array}{l}
0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+S\left(u^{k+1}-u^{k}\right) \\
0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+T\left(p^{k+1}-p^{k}\right)
\end{array}\right.
$$

- Expectations on S and T :
(1) S and T shall fulfill $M_{S, T} \succ 0$.
(2) (Scaled) resolvents $(S+\partial G)^{-1}$ and $\left(T+\partial F^{*}\right)^{-1}$ are easy to compute.
(3) $\widehat{K}=T^{-1 / 2} K S^{-1 / 2}$ has smaller condition number than K.
- The theory for why this accelerates convergence is open.
- Empirical evidences of acceleration are observed.
- Goal: Design S and T that balance (1), (2), (3).

Diagonal preconditioner

- Diagonal preconditioners [Pock/Chambolle, 2011]:

$$
\begin{aligned}
S & =\operatorname{diag}\left(\left\{s_{j}\right\}\right), s_{j}=\sum_{i}\left|K_{i j}\right|^{2-\theta}, \\
T & =\operatorname{diag}\left(\left\{t_{i}\right\}\right), t_{i}=\sum_{j}\left|K_{i j}\right|^{\theta},
\end{aligned}
$$

where $\theta \in[0,2]$.

- $\widehat{K}=T^{-1 / 2} K S^{-1 / 2}$ suggests that S (resp. T) normalizes columns (resp. rows) of K by row (resp. column) sums.

Diagonal preconditioner

- Diagonal preconditioners [Pock/Chambolle, 2011]:

$$
\begin{aligned}
S & =\operatorname{diag}\left(\left\{s_{j}\right\}\right), s_{j}=\sum_{i}\left|K_{i j}\right|^{2-\theta}, \\
T & =\operatorname{diag}\left(\left\{t_{i}\right\}\right), t_{i}=\sum_{j}\left|K_{i j}\right|^{\theta},
\end{aligned}
$$

where $\theta \in[0,2]$.

- $\widehat{K}=T^{-1 / 2} K S^{-1 / 2}$ suggests that $S($ resp. T) normalizes columns (resp. rows) of K by row (resp. column) sums.
- Convergence is (almost) justified by the following result:

Proposition

Given matrix K, the diagonal preconditioners S and T above satisfy $M_{S, T} \succeq 0$.
Proof: on board.

Diagonal preconditioner

- Diagonal preconditioners [Pock/Chambolle, 2011]:

$$
\begin{aligned}
S & =\operatorname{diag}\left(\left\{s_{j}\right\}\right), s_{j}=\sum_{i}\left|K_{i j}\right|^{2-\theta}, \\
T & =\operatorname{diag}\left(\left\{t_{i}\right\}\right), t_{i}=\sum_{j}\left|K_{i j}\right|^{\theta},
\end{aligned}
$$

where $\theta \in[0,2]$.

- $\widehat{K}=T^{-1 / 2} K S^{-1 / 2}$ suggests that S (resp. T) normalizes columns (resp. rows) of K by row (resp. column) sums.
- Convergence is (almost) justified by the following result:

Proposition

Given matrix K, the diagonal preconditioners S and T above satisfy $M_{S, T} \succeq 0$.
Proof: on board.

- Particularly interesting for problems on weighted graphs...

Convex optimization on weighted graphs

- Let $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \omega)$ be a weighted graph, with \mathcal{V} set of vertices, \mathcal{E} set of edges, $\omega: \mathcal{E} \rightarrow \mathbb{R}_{+}$weight for edges.
- $\nabla \in \mathbb{R}^{|\mathcal{E}| \times|\mathcal{V}|}$ is the incidence matrix s.t. for each $\left(j, j^{\prime}\right) \in \mathcal{E}$:
$\nabla_{\left(j, j^{\prime}\right), j}=1, \nabla_{\left(j, j^{\prime}\right), j^{\prime}}=-1, \nabla_{\left(j, j^{\prime}\right), j^{\prime \prime}}=0$ whenever $j^{\prime \prime} \notin\left\{j, j^{\prime}\right\}$.

Convex optimization on weighted graphs

- Let $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \omega)$ be a weighted graph, with \mathcal{V} set of vertices, \mathcal{E} set of edges, $\omega: \mathcal{E} \rightarrow \mathbb{R}_{+}$weight for edges.
- $\nabla \in \mathbb{R}^{|\mathcal{E}| \times|\mathcal{V}|}$ is the incidence matrix s.t. for each $\left(j, j^{\prime}\right) \in \mathcal{E}$:
$\nabla_{\left(j, j^{\prime}\right), j}=1, \nabla_{\left(j, j^{\prime}\right), j^{\prime}}=-1, \nabla_{\left(j, j^{\prime}\right), j^{\prime \prime}}=0$ whenever $j^{\prime \prime} \notin\left\{j, j^{\prime}\right\}$.
- Convex optimization on weighted graphs:

$$
\min _{u: \mathcal{V} \rightarrow \mathbb{R}} F(K u)+G(u) .
$$

where $F: \mathbb{R}^{\mathcal{E}} \rightarrow \mathbb{R}, G: \mathbb{R}^{\mathcal{V}} \rightarrow \mathbb{R}$ are convex functions, and $K=\operatorname{diag}(\omega) \nabla$.

Example: Image segmentation on 2D grid

- Segment images represented on the 2D grid:

Tao Wu

Zhenzhang Ye

Gradient Methods

Proximal Algorithms

- \mathcal{V} contains image pixels; \mathcal{E}, ω are model-dependent.
- Pointwise constraint: Δ^{L-1} is the probability simplex in \mathbb{R}^{L}.
- Unary term: $f: \mathcal{V} \rightarrow \mathbb{R}^{L}$ is the pixelwise prediction.
- Pairwise term: $\omega_{j, j^{\prime}}$ models pairwise similarities, e.g.
- Edges are forged among spatially neighbored pixels; or
- Use Gaussian similarity measure: $\omega_{j, j^{\prime}}=\exp \left(-\frac{\left|j-j^{\prime}\right|^{2}}{\sigma^{2}}\right)$.

Empirical study

On the image segmentation example, we compare PDHG

$$
\left\{\begin{array}{l}
0 \in \partial G\left(u^{k+1}\right)+K^{\top} p^{k}+S\left(u^{k+1}-u^{k}\right) \\
0 \in \partial F^{*}\left(p^{k+1}\right)-K\left(2 u^{k+1}-u^{k}\right)+T\left(p^{k+1}-p^{k}\right)
\end{array}\right.
$$

(i) without preconditioning and (ii) with preconditioning:
(i) $S=s l, T=t l, s=t=\|K\|$.
(ii) $S=\operatorname{diag}\left(\left\{s_{j}\right\}\right), T=\operatorname{diag}\left(\left\{t_{i}\right\}\right), s_{j}=\sum_{i}\left|K_{i j}\right|, t_{i}=\sum_{j}\left|K_{i j}\right|$.

Gradient Methods

What you should know from this chapter

- Gradient methods:
- What is a descent method? (descent direction \& step size)
- How to guarantee convergence? (descent method with line search, majorize-minimize)
- Proximal algorithms:
- How to derive proximal algorithms (FBS, ADMM, PDHG, DRS) on model problems?
- When / how to apply a specific proximal algorithm to a specific problem?
- What is an averaged operator?
- How to interpret proximal algorithms as customized proximal iterations?
- How to prove convergence of averaged-operator fixed-point iterations? (under general / special assumptions)
- Acceleration techniques (not for exam):
- How to accelerate gradient steps in proximal algorithms? (Second-order, multistep)
- How to precondition PDHG?
- Some intuitions on why such acceleration techniques work.

Gradient Methods
Proximal Algorithms
Convergence Theory
Acceleration
Summary

