Chapter 2 Optimization Algorithms

Convex Optimization for Machine Learning & Computer Vision WS 2019/20

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration Summary

Tao Wu Zhenzhang Ye

Computer Vision Group Department of Informatics TU Munich

Gradient-based Methods

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization

Problem setting:

minimize J(u) over $u \in \mathbb{E}$.

Assume:

- **1** $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable.
- 2 There exists a global minimizer u^* . (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J(u^*) = 0$.)

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms
Convergence Theory

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization

Problem setting:

minimize J(u) over $u \in \mathbb{E}$.

Assume:

- **1** $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable.
- 2 There exists a global minimizer u^* . (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J(u^*) = 0$.)

Methods under consideration:

- 1 (Scaled) gradient descent.
- 2 Line search method.
- 3 Majorize-minimize method.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration

Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization

Problem setting:

minimize J(u) over $u \in \mathbb{E}$.

Assume:

- **1** $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable.
- 2 There exists a global minimizer u^* . (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J(u^*) = 0$.)

Methods under consideration:

- 1 (Scaled) gradient descent.
- 2 Line search method.
- 3 Majorize-minimize method.

Analytical questions:

- 1 Convergence (or not); global vs. local convergence.
- 2 Convergence rate (in special cases).

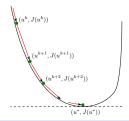
Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms
Convergence Theory

Descent method



Descent method

Initialize $u^0 \in \mathbb{E}$. Iterate with k = 0, 1, 2, ...

- 1 If the stopping criteria $\|\nabla J(u^k)\| \le \epsilon$ is *not* satisfied, then continue; otherwise return u^k and stop.
- **2** Choose a **descent direction** $d^k \in \mathbb{E}$ s.t.

$$\left\langle
abla J(u^k), d^k
ight
angle < 0.$$

3 Choose an "appropriate" step size $\tau^k > 0$, and update

$$u^{k+1} = u^k + \tau^k d^k.$$

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration

Descent direction

Theorem

If $\langle \nabla J(u^k), d^k \rangle < 0$, then $J(u^k + \tau d^k) < J(u^k)$ for all sufficiently small $\tau > 0$.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Descent direction

Theorem

If $\langle \nabla J(u^k), d^k \rangle < 0$, then $J(u^k + \tau d^k) < J(u^k)$ for all sufficiently small $\tau > 0$.

Proof: Use the Taylor expansion:

$$J(u^k + \tau d^k) = J(u^k) + \tau \left\langle \nabla J(u^k), d^k \right\rangle + o(\tau)$$

= $J(u^k) + \tau \left(\left\langle \nabla J(u^k), d^k \right\rangle + o(1) \right) < J(u^k)$ as $\tau \to 0^+$.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration

Descent direction

Theorem

If $\langle \nabla J(u^k), d^k \rangle < 0$, then $J(u^k + \tau d^k) < J(u^k)$ for all sufficiently small $\tau > 0$.

Proof: Use the Taylor expansion:

$$egin{aligned} J(u^k + au d^k) &= J(u^k) + au \left\langle
abla J(u^k), d^k
ight
angle + o(au) \ &= J(u^k) + au \left(\left\langle
abla J(u^k), d^k
ight
angle + o(1)
ight) < J(u^k) \quad ext{as } au o 0^+. \end{aligned}$$

Choices of descent direction

- 1 Gradient/Steepest descent: $d^k = -\nabla J(u^k) = \arg\min_{d \in \mathbb{E}, \|d\| \le 1} \left\langle \nabla J(u^k), d \right\rangle.$
- 2 Scaled gradient: $d^k = -(H^k)^{-1} \nabla J(u^k)$.
- 3 Newton: $H^k = \nabla^2 J(u^k)$, assuming J is twice continuously differentiable and $\nabla^2 J(u^k)$ is spd.
- 4 Quasi-Newton: $H^k \approx \nabla^2 J(u^k)$, H^k is spd.

Optimization Algorithms

Tao Wu Zhenzhang Ye

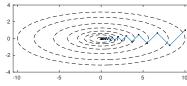
Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration -

Gradient descent with exact line search



Gradient descent with exact line search:

$$\begin{aligned} u^{k+1} &= u^k - \tau^k \nabla J(u^k), \\ \tau^k &= \arg\min_{\tau \geq 0} J(u^k - \tau \nabla J(u^k)). \end{aligned}$$

Optimization Algorithms

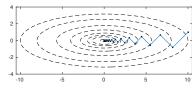
Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory
Acceleration

Gradient descent with exact line search



Gradient descent with exact line search:

$$u^{k+1} = u^k - \tau^k \nabla J(u^k),$$

$$\tau^k = \arg\min_{\tau > 0} J(u^k - \tau \nabla J(u^k)).$$

• Case study: $J(u) = \frac{1}{2} \langle u, Qu \rangle - \langle b, u \rangle$, matrix Q is spd.

$$- \nabla J(u) = Qu - b, \|\cdot\|_Q^2 \equiv \langle \cdot, Q \cdot \rangle.$$

Optimization Algorithms

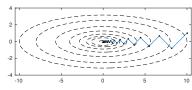
Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Gradient descent with exact line search



Gradient descent with exact line search:

$$u^{k+1} = u^k - \tau^k \nabla J(u^k),$$

$$\tau^k = \arg\min_{\tau > 0} J(u^k - \tau \nabla J(u^k)).$$

- Case study: $J(u) = \frac{1}{2} \langle u, Qu \rangle \langle b, u \rangle$, matrix Q is spd.
 - $\nabla J(u) = Qu b, \|\cdot\|_Q^2 \equiv \langle \cdot, Q \cdot \rangle.$

$$\begin{split} - \tau^k &= \arg\min_{\tau \geq 0} J(u^k - \tau \nabla J(u^k)) = \frac{\|\nabla J(u^k)\|^2}{\|\nabla J(u^k)\|_Q^2} \quad \Rightarrow \\ \|u^{k+1} - u^*\|_Q^2 &= \left(1 - \frac{\|\nabla J(u^k)\|^4}{\|\nabla J(u^k)\|_Q^2 \|\nabla J(u^k)\|_{Q^{-1}}^2}\right) \|u^k - u^*\|_Q^2 \\ &\leq \left(\frac{\lambda_{\max}(Q) - \lambda_{\min}(Q)}{\lambda_{\max}(Q) + \lambda_{\min}(Q)}\right)^2 \|u^k - u^*\|_Q^2. \end{split}$$

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration Summary

Inexact line search

Backtracking line search

• Sufficient decrease condition (let $c_1 \in (0, 1)$):

$$J(u^k + \tau d^k) \le J(u^k) + c_1 \tau \left\langle \nabla J(u^k), d^k \right\rangle. \tag{A}$$

Curvature condition (let c₂ ∈ (c₁, 1)):

$$\left\langle \nabla J(u^k + \tau d^k), d^k \right\rangle \ge c_2 \left\langle \nabla J(u^k), d^k \right\rangle.$$
 (C)

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Inexact line search

Backtracking line search

• Sufficient decrease condition (let $c_1 \in (0, 1)$):

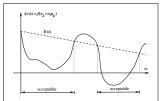
$$J(u^k + \tau d^k) \le J(u^k) + c_1 \tau \left\langle \nabla J(u^k), d^k \right\rangle. \tag{A}$$

Curvature condition (let c₂ ∈ (c₁, 1)):

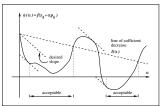
$$\left\langle \nabla J(u^k + \tau d^k), d^k \right\rangle \ge c_2 \left\langle \nabla J(u^k), d^k \right\rangle.$$
 (C)

• (A) → Armijo line search; (A) & (C) → Wolfe-Powell I.s.

Armijo I.s.



Wolfe-Powell I.s.



Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Convergence of backtracking line search

Lemma (feasibility of line search)

Assume that $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable, $\langle \nabla J(u^k), d^k \rangle < 0 \ \forall k$, and $0 < c_1 < c_2 < 1$. Then there exists an open interval in which the step size τ satisfies (A) and (C). Proof: on board.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms
Convergence Theory

Acceleration

Convergence of backtracking line search

Lemma (feasibility of line search)

Assume that $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable, $\langle \nabla J(u^k), d^k \rangle < 0 \ \forall k$, and $0 < c_1 < c_2 < 1$. Then there exists an open interval in which the step size τ satisfies (A) and (C).

Proof: on board.

Theorem (Zoutendijk)

Assume that $J: \mathbb{E} \to \mathbb{R}$ is cont'ly differentiable, and (A) and (C) are both satisfied with $0 < c_1 < c_2 < 1$ for each k. In addition, J is μ -Lipschitz differentiable on $\{u \in \mathbb{E} : J(u) \leq J(u^0)\}$. Then

$$\sum_{k=0}^{\infty} \frac{\left|\left\langle \nabla J(u^k), d^k \right\rangle\right|^2}{\|d^k\|^2} < \infty.$$

Proof: on board.

Remark

If $\frac{\left|\left\langle \nabla J(u^k), d^k \right\rangle\right|}{\|\nabla J(u^k)\| \|d^k\|} \ge \text{constant} > 0$, then $\lim_{k \to \infty} \|\nabla J(u^k)\| = 0$.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms
Convergence Theory

Acceleration

Summary

Majorize-minimize method

Majorizing function

A function $\widehat{J}(\cdot; u)$ is a **majorant** of J at $u \in \mathbb{E}$ if

$$\begin{cases} \widehat{J}(u;u) = J(u), \\ \widehat{J}(\cdot;u) \geq J(\cdot). \end{cases}$$

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Majorize-minimize method

Majorizing function

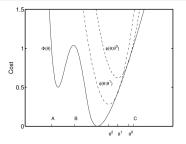
A function $\widehat{J}(\cdot; u)$ is a **majorant** of J at $u \in \mathbb{E}$ if

$$\begin{cases} \widehat{J}(u;u) = J(u), \\ \widehat{J}(\cdot;u) \geq J(\cdot). \end{cases}$$

Majorize-minimize (MM) algorithm

Let $\widehat{J}(\cdot; u)$ majorize $J \ \forall u \in \mathbb{E}$. Then the MM iteration reads:

$$u^{k+1} \in \arg\min_{u} \widehat{J}(u; u^k).$$



Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory
Acceleration

Summary

Remark

1 Monotonic decrease of objectives:

$$J(u^{k+1}) \leq \widehat{J}(u^{k+1}; u^k) \leq \widehat{J}(u^k; u^k) = J(u^k).$$

- **2** Efficiency of MM relies on the choice of the majorant $\widehat{J}(\cdot; u)$, i.e., $\widehat{J}(\cdot; u)$ is easy to minimize.
- **3** Common choices of $\widehat{J}(\cdot; u)$ are quadratics.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration

Proximal Algorithms
Convergence Theory

Acceleration Summary

Remark

1 Monotonic decrease of objectives:

$$J(u^{k+1}) \leq \widehat{J}(u^{k+1}; u^k) \leq \widehat{J}(u^k; u^k) = J(u^k).$$

- **2** Efficiency of MM relies on the choice of the majorant $\widehat{J}(\cdot; u)$, i.e., $\widehat{J}(\cdot; u)$ is easy to minimize.
- **3** Common choices of $\widehat{J}(\cdot; u)$ are quadratics.

Gradient descent as MM

• Observe that $u^{k+1} = u^k - \tau \nabla J(u^k)$ iff

$$u^{k+1} = \arg\min_{u} J(u^k) + \left\langle \nabla J(u^k), u - u^k \right\rangle + \frac{1}{2\tau} \|u - u^k\|^2.$$

• When $J(u^k) + \langle \nabla J(u^k), \cdot - u^k \rangle + \frac{1}{2\tau} \| \cdot - u^k \|^2 \ge J(\cdot)$ holds?

Lemma

Assume that $J:\mathbb{E}\to\mathbb{R}$ is μ -Lipschitz differentiable. Then $\forall u,v\in\mathbb{E}$:

$$|J(v)-J(u)-\langle \nabla J(u),v-u\rangle|\leq \frac{\mu}{2}\|v-u\|^2.$$

Proof: on board.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Gradient Methods

Proximal Algorithms

Convergence Theory

Acceleration

Lemma

Assume that $J: \mathbb{E} \to \mathbb{R}$ is μ -Lipschitz differentiable. Then $\forall u, v \in \mathbb{E}$:

$$|J(v)-J(u)-\langle \nabla J(u),v-u\rangle|\leq \frac{\mu}{2}\|v-u\|^2.$$

Proof: on board.

Theorem (convergence of gradient descent)

Assume that $J: \mathbb{E} \to \mathbb{R}$ is μ -Lipschitz differentiable. Then the gradient descent iteration

$$u^{k+1} = u^k - \tau \nabla J(u^k)$$

with $\tau \in (0, 1/\mu]$ yields $\lim_{k \to \infty} \nabla J(u^k) = 0$.

Proof: on board.

Optimization Algorithms

Tao Wu Zhenzhang Ye

Proximal Algorithms Convergence Theory

Acceleration

Summarv

Lemma

Assume that $J:\mathbb{E}\to\mathbb{R}$ is μ -Lipschitz differentiable. Then $\forall u,v\in\mathbb{E}$:

$$|J(v)-J(u)-\langle \nabla J(u),v-u\rangle|\leq \frac{\mu}{2}\|v-u\|^2.$$

Proof: on board.

Theorem (convergence of gradient descent)

Assume that $J:\mathbb{E}\to\mathbb{R}$ is μ -Lipschitz differentiable. Then the gradient descent iteration

$$u^{k+1} = u^k - \tau \nabla J(u^k)$$

with $\tau \in (0, 1/\mu]$ yields $\lim_{k \to \infty} \nabla J(u^k) = 0$.

Proof: on board.

Recipe of convergence

By solving the surrogate problem in MM, we achieve: (1) sufficient decrease in the objective; (2) inexact optimality condition which matches the exact OC in the limit.

Optimization Algorithms

Tao Wu Zhenzhang Ye

radient Methods

Proximal Algorithms

Convergence Theory

Acceleration

Summary