Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

# Weekly Exercises 10 

Room: 02.09.023
Wednesday, 29.01.2020, 12:15-14:00
Submission deadline: Monday, 27.01.2020, 16:15, Room 02.09.023

## Primal-Dual Methods

Exercise 1 (4 Points). Consider the optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} g(x)+\sum_{i=1}^{k} f_{i}\left(K_{i} x\right) \tag{1}
\end{equation*}
$$

with $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, f_{i}: \mathbb{R}^{m_{i}} \rightarrow \overline{\mathbb{R}}$ closed, proper, convex and $K_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{i}}$ linear. Assume that $g$ and all $f_{i}$ are simple in the sense that their proximal mapping

$$
\operatorname{prox}_{\tau f_{i}}(y):=\operatorname{argmin}_{x \in \mathbb{R}^{m_{i}}} f_{i}(x)+\frac{1}{2 \tau}\|x-y\|^{2}
$$

can be efficiently computed. Explain how (1) can be solved with PDHG and write down the explicit update equations.
Hint: Stack the individual $K_{i}$ into a single matrix $K$.
Exercise 2 (4 Points). Prove that the algorithm

$$
\begin{align*}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} \bar{p}^{k}\right) \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K u^{k+1}\right)  \tag{PDHG*}\\
\bar{p}^{k+1} & =2 p^{k+1}-p^{k}
\end{align*}
$$

converges, and the limit of the $u^{k}$ is a minimizer of $G(u)+F(K u)$ (with the same assumptions on $F, G$, and $K$ as in the lecture).

Hint: Show that $\left(\mathrm{PDHG}^{*}\right)$ is equivalent to an algorithm we discussed in the lecture applied to a reformulated problem!

Exercise 3 ( 6 Points). Consider the consensus optimization problem:

$$
\begin{align*}
\min _{\left\{x_{i}\right\}_{i=1}^{l} \subset \mathbb{R}^{n}, x_{0} \in \mathbb{R}^{n}} & \sum_{i=1}^{l} f_{i}\left(x_{i}\right)  \tag{2}\\
\text { subject to } & x_{i}=x_{0} \quad \forall i \in\{1,2, \ldots, l\} .
\end{align*}
$$

Here each function $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is proper, convex, and lower-semicontinuous.

- Write down the augmented Lagrangian functional for (2) (which will involve multipliers $\left\{y_{i}\right\}_{i=1}^{l} \subset \mathbb{R}^{n}$ ).
- Formulate an alternating direction of multipliers (ADMM) method for (2). Update the variables in the order of $\left\{x_{i}\right\}_{i=1}^{l},\left\{y_{i}\right\}_{i=1}^{l}, x_{0}$.

