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Primal-Dual Methods (8+6 Points)

Exercise 1 (4 Points). Consider the optimization problem
k
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with g : R* = R, f; : R™ — R closed, proper, convex and K, : R* — R™ linear.
Assume that g and all f; are simple in the sense that their proximal mapping
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can be efficiently computed. Explain how (1) can be solved with PDHG and write
down the explicit update equations.
Hint: Stack the individual K; into a single matrix K.

Exercise 2 (4 Points). Prove that the algorithm

uFtt = prox, o (u* — TK*pY),
PP = prox, p. (pF + o Ku"), (PDHG*)
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converges, and the limit of the u* is a minimizer of G(u) + F(Ku) (with the same
assumptions on F'; G, and K as in the lecture).

Hint: Show that (PDHG*) is equivalent to an algorithm we discussed in the
lecture applied to a reformulated problem!

Exercise 3 (6 Points). Consider the consensus optimization problem:
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subject to z; =x¢ Vi€ {l,2,...,1}.

Here each function f; : R” — R U {oco} is proper, convex, and lower-semicontinuous.
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e Write down the augmented Lagrangian functional for (2) (which will involve
multipliers {y;}\_; C R").

e Formulate an alternating direction of multipliers (ADMM) method for (2).
Update the variables in the order of {z;}_,, {v:}\_,, zo.



