Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Exercises: Zhenzhang Ye Winter Semester 2019/20 Computer Vision Group Institut für Informatik Technische Universität München

(8+6 Points)

Weekly Exercises 10

Room: 02.09.023 Wednesday, 29.01.2020, 12:15-14:00 Submission deadline: Monday, 27.01.2020, 16:15, Room 02.09.023

Primal-Dual Methods

Exercise 1 (4 Points). Consider the optimization problem

$$\min_{x \in \mathbb{R}^n} g(x) + \sum_{i=1}^k f_i(K_i x), \tag{1}$$

with $g : \mathbb{R}^n \to \overline{\mathbb{R}}, f_i : \mathbb{R}^{m_i} \to \overline{\mathbb{R}}$ closed, proper, convex and $K_i : \mathbb{R}^n \to \mathbb{R}^{m_i}$ linear. Assume that g and all f_i are simple in the sense that their proximal mapping

$$\operatorname{prox}_{\tau f_i}(y) := \operatorname{argmin}_{x \in \mathbb{R}^{m_i}} f_i(x) + \frac{1}{2\tau} \|x - y\|^2,$$

can be efficiently computed. Explain how (1) can be solved with PDHG and write down the explicit update equations.

Hint: Stack the individual K_i into a single matrix K.

Exercise 2 (4 Points). Prove that the algorithm

$$u^{k+1} = \operatorname{prox}_{\tau G}(u^{k} - \tau K^{*} \bar{p}^{k}),$$

$$p^{k+1} = \operatorname{prox}_{\sigma F^{*}}(p^{k} + \sigma K u^{k+1}),$$

$$\bar{p}^{k+1} = 2p^{k+1} - p^{k}.$$
(PDHG*)

converges, and the limit of the u^k is a minimizer of G(u) + F(Ku) (with the same assumptions on F, G, and K as in the lecture).

Hint: Show that (PDHG^{*}) is equivalent to an algorithm we discussed in the lecture applied to a reformulated problem!

Exercise 3 (6 Points). Consider following matrix

$$M := \begin{bmatrix} S & -K^\top \\ -K & T \end{bmatrix},$$

where S and T are symmetric matrices, and $S \succ 0$, $T \succ 0$ (i.e. S and T are positive definite).

- Show that a matrix $A \in \mathbb{R}^{n \times n} \succ 0$ if and only if for an invertible matrix $P \in \mathbb{R}^{n \times n}$, $PAP^{\top} \succ 0$.
- Show that if $T KS^{-1}K^{\top} \succ 0$, then $M \succ 0$. Hint: Firstly, manage to compute M^{-1} by solving following equation:

$$M[u,p]^{\top} = [x,y]^{\top}.$$

To get $T - KS^{-1}K^{\top}$, you should solve u by x and p. Then substitute u to get p. Secondly, reformulate M^{-1} like:

$$M^{-1} = \begin{bmatrix} I & A \\ 0 & I \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix} \begin{bmatrix} I & 0 \\ D & I \end{bmatrix},$$

where A, B, C, D are four matrixes can be expressed by S, K and T. Finally, using the theorem from first problem to get the conclusion.