Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 10

Room: 02.09.023
Wednesday, 29.01.2020, 12:15-14:00
Submission deadline: Monday, 27.01.2020, 16:15, Room 02.09.023

Primal-Dual Methods

Exercise 1 (4 Points). Consider the optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} g(x)+\sum_{i=1}^{k} f_{i}\left(K_{i} x\right) \tag{1}
\end{equation*}
$$

with $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, f_{i}: \mathbb{R}^{m_{i}} \rightarrow \overline{\mathbb{R}}$ closed, proper, convex and $K_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{i}}$ linear. Assume that g and all f_{i} are simple in the sense that their proximal mapping

$$
\operatorname{prox}_{\tau f_{i}}(y):=\operatorname{argmin}_{x \in \mathbb{R}^{m_{i}}} f_{i}(x)+\frac{1}{2 \tau}\|x-y\|^{2}
$$

can be efficiently computed. Explain how (1) can be solved with PDHG and write down the explicit update equations.
Hint: Stack the individual K_{i} into a single matrix K.
Exercise 2 (4 Points). Prove that the algorithm

$$
\begin{align*}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} \bar{p}^{k}\right) \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K u^{k+1}\right) \tag{*}\\
\bar{p}^{k+1} & =2 p^{k+1}-p^{k}
\end{align*}
$$

converges, and the limit of the u^{k} is a minimizer of $G(u)+F(K u)$ (with the same assumptions on F, G, and K as in the lecture).

Hint: Show that (PDHG*) is equivalent to an algorithm we discussed in the lecture applied to a reformulated problem!

Exercise 3 (6 Points). Consider following matrix

$$
M:=\left[\begin{array}{cc}
S & -K^{\top} \\
-K & T
\end{array}\right]
$$

where S and T are symmetric matrixes, and $S \succ 0, T \succ 0$ (i.e. S and T are positive definite).

- Show that a matrix $A \in \mathbb{R}^{n \times n} \succ 0$ if and only if for an invertible matrix $P \in \mathbb{R}^{n \times n}, P A P^{\top} \succ 0$.
- Show that if $T-K S^{-1} K^{\top} \succ 0$, then $M \succ 0$.

Hint: Firstly, manage to compute M^{-1} by solving following equation:

$$
M[u, p]^{\top}=[x, y]^{\top} .
$$

To get $T-K S^{-1} K^{\top}$, you should solve u by x and p. Then substitute u to get p. Secondly, reformulate M^{-1} like:

$$
M^{-1}=\left[\begin{array}{cc}
I & A \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
B & 0 \\
0 & C
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
D & I
\end{array}\right]
$$

where A, B, C, D are four matrixes can be expressed by S, K and T. Finally, using the theorem from first problem to get the conclusion.

