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Proximal operator (10+6 Points)

Exercise 1 (4 Points). Assume function J : R” — R is convex and subdifferentiable
on its domain. Show that v* minimizes J if and only if u* = prox(u*).

Exercise 2 (4 Points). Prove following properties of proximal operator:
o If J(u) = af(u) + b, with a > 0, then prox, ;(v) = prox,(v).
o If J(u) = f(Qu), where Q is an orthogonal matrix, then prox, ;(v) = Q "prox, ;(Qv)

Exercise 3 (4 Points). Show that the ¢;-norm proximal operator of v € R"™ is given

as
vi+ A ifu < =X

pI'OX)\”_”l(U) =uc an u; ;=<0 if v; € [—)\, )\]
Vi — A if v; > A

Exercise 4 (4 points). Compute the proximal operator of the 1,2-norm, i.e.

PIOXr x|y 25

where X € R™*" is a matrix .



Multinomial Logistic Regression (Due:16.12) (16
Points)

Exercise 5 (16 Points). In this exercise you are asked to train a linear model for
a multiclass classification task with Logistic regression. The idea is as follows: You
are given a set of training samples Z = {1,..., N} that are represented by their
feature vectors x; € R?, for i € Z. Each training sample i is associated with a class
label y; € {1,...,C}. The aim is to estimate a linear classifier parameterized by
W* € R™C p* € RE so that y; = argmax < j<c x) W + b} for most training samples
i. Once you have obtained this “optimal” classifier the hope is, that you are able to
classify new unseen and unlabeled samples = € R%. In machine learning this is called
generalization. For this task you may query your trained model via the classifier
rule

y = argmax,<;<c ¥ W) + b} (1)

and y probably is the true class label of x if your model generalizes well. In order
to estimate the model we solve an optimization problem of the form
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where

(3)

W, b, xi,y;) = — log ( exp({Wy,, %) + by,) )

S5 exp((W, i) + by)

is called the softmax loss. Note that the above problem is smooth and strongly
convex and can be solved with gradient descent. In practice however, it may happen,
that some features (i.e. components of the vector x;) do not contain any information
about the true class labels, i.e. components that are just noise. In order to filter
out the useless features we modify the norm on W. So we have
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You are asked to do the following:
e Download the toy data template from the homepage

e Implement a proximal gradient descent algorithm to optimize above objective
function (4) (Avoid for-loops)

e Make sure that your objective monotonically decreases. Plot the objective

values. Stop your code if the difference of two successive iterates is less than
10712,



In order to ensure that your derivative is computed correctly you may first
optimize the fully differentiable model (2) with MATLABs fminunc with the
options 'GradObj’, 'On’ and ' DerivativeCheck’, 'On’. (Python: check out e.g.
scipy.optimize.grad_check. This step is optional.)

[teratively compute the test error in percent, i.e. how many test samples are
not classified correctly via the rule (1).

Play around with different parameter settings for A;, A\o. Can you identify the
useless features? Explain why the model generalizes better to unseen test data
if you use 1, 2-norm on W* (answer by comment at the end of your code).

You may apply your code to the MNIST dataset http://yann.lecun.com/
exdb/mnist/ and see that your are now able to classify handwritten digits
(Optional).



