Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 7

Room: 02.09.023
Wednesday, 18.12.2019, 12:15-14:00
Submission deadline: Monday, 16.12.2019, 16:15, Room 02.09.023

Duality

(12+6 Points)
Exercise 1 (6 Points). Let $X, Y \in \mathbb{R}^{m \times n}$ be matrices and let $Y_{i}, X_{i} \in \mathbb{R}^{m}$ denote the i-th columns of X, Y. Then, the Frobenius scalar product is defined as follows:

$$
\begin{equation*}
\langle X, Y\rangle_{F}:=\sum_{i=1}^{n}\left\langle X_{i}, Y_{i}\right\rangle \tag{1}
\end{equation*}
$$

where $\left\langle X_{i}, Y_{i}\right\rangle$ is the classical vector scalar product. For notational convenience we often omit the subscript F in $\langle\cdot, \cdot\rangle_{F}$. Compute the convex conjugates of the following functions:

1. $f_{1}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R} \cup\{\infty\}$ where $f_{1}(X)=\|X\|_{2, \infty}:=\max _{1 \leq i \leq n}\left\|X_{i}\right\|_{2}$.
2. $f_{2}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R} \cup\{\infty\}$ where

$$
f_{2}(X):=\delta_{\|\cdot\|_{2,1} \leq 1}(X)= \begin{cases}0 & \text { if }\|X\|_{2,1}:=\sum_{i=1}^{n}\left\|X_{i}\right\|_{2} \leq 1 \tag{2}\\ \infty & \text { otherwise }\end{cases}
$$

Exercise 2 (4 Points). Assuming $J: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, \varepsilon>0, c \in \mathbb{R}^{n}$, and J^{*} (i.e. the convex conjugate of J) are known, derive the expression of $(\langle c, \cdot\rangle+\varepsilon J(\cdot))^{*}$ in terms of J^{*}, ε, and c.

Exercise 3 (8 Points). Let $C \in \mathbb{R}^{m \times n}, \mu \in \mathbb{R}^{m}, \nu \in \mathbb{R}^{n}, \varepsilon>0$ be given. Define $\mathbf{1}_{m}=(1,1, \ldots, 1) \in \mathbb{R}^{m}$ and similarly for $\mathbf{1}_{n} \in \mathbb{R}^{n}$. Consider the "optimal mass transport" problem:

$$
\min _{X} F(K X)+G(X),
$$

where

$$
\begin{aligned}
& F:(u, v) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \mapsto \delta\{(u, v)=(\mu, \nu)\} \in \overline{\mathbb{R}} \\
& G: X \in \mathbb{R}^{m \times n} \mapsto \sum_{i=1}^{m} \sum_{j=1}^{n}\left(C_{i j} X_{i j}+\varepsilon X_{i j}\left(\log X_{i j}-1\right)+\delta\left\{X_{i j} \geq 0\right\}\right) \in \overline{\mathbb{R}}, \\
& K: X \in \mathbb{R}^{m \times n} \mapsto\left(X \mathbf{1}_{n}, X^{\top} \mathbf{1}_{m}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n}
\end{aligned}
$$

(1) Use the Fenchel-Rockafellar duality theorem to derive the dual formulation of the above problem. The formulae for the convex conjugates of F^{*} and G^{*} must be explicitly provided.
Hint: The adjoint of K (denoted by $\left.K^{\top}\right)$ can be derived as $K^{\top}:(u, v) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \mapsto$ $u \mathbf{1}_{n}^{\top}+\mathbf{1}_{m} v^{\top} \in \mathbb{R}^{m \times n} ;$
(2) State the optimality conditions which involve both primal and dual variables. The formulae for all involved subdifferentials must be explicitly provided.

