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Theory: Convex Sets (12+8 Points)
Exercise 1 (4 Points). Let C be a family of convex sets in Rn, C1, C2 ∈ C, A ∈ Rm×n,
b ∈ Rm, λ ∈ R. Prove convexity of the following sets:

•
⋂
C∈C C

• P := {x ∈ Rn : Ax ≤ b}

• C1 + C2 := {x+ y : x ∈ C1, y ∈ C2} (the Minkowski sum of C1 and C2)

• λC1 := {λx : x ∈ C1} (the λ-dilatation of C1).

Solution.

• Let x1, x2 ∈
⋂
C∈C C. Then x1, x2 ∈ C for all C ∈ C. Since any C is convex,

µx1+(1−µ)x2 ∈ C for all µ ∈ [0, 1] and C ∈ C and therefore µx1+(1−µ)x2 ∈⋂
C∈C C.

• Let x1, x2 ∈ P , which means that Ax1 ≤ b and Ax2 ≤ b. Let µ ∈ [0, 1]. Then,
A(µx1 + (1 − µ)x2) = µAx1 + (1 − µ)Ax2 ≤ µb + (1 − µ)b = b. Therefore
µx1 + (1− µ)x2 ∈ P .

• Let x, y ∈ C1+C2. Then there exist x1, y1 ∈ C1, x2, y2 ∈ C2 so that x = x1+x2
and y = y1 + y2. Let µ ∈ [0, 1]. Then, since C1, C2 convex µx + (1 − µ)y =
µx1+µx2+(1−µ)y1+(1−µ)y2 = µx1 + (1− µ)y1︸ ︷︷ ︸

∈C1

+µx2 + (1− µ)y2︸ ︷︷ ︸
∈C2

∈ C1+C2.

• Let x, y ∈ C1 and µ ∈ [0, 1]. Then, since C1 convex, µλx + (1 − µ)λy =
λ (µx+ (1− µ)y)︸ ︷︷ ︸

∈C1

∈ λC1.

Exercise 2 (4 Points). Prove that if the set C ⊂ Rn is convex, then
∑N

i=1 λixi ∈ C
with x1, x2, . . . , xN ∈ C and 0 ≤ λ1, λ2, . . . , λN ∈ R,

∑N
i=1 λi = 1.

Hint: Use induction to prove.
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Solution. When N=2, it directly follows the definition of convex set.
Assume it holds for N. Now consider N+1 case:

N+1∑
i=1

λixi =
N∑
i=1

λixi + λN+1xN+1

If there exists a certain i such that λi = 0, it will be N case which is assumed to
hold. Therefore, all λi > 0 and above equation turns into:

(1− λN+1)
N∑
i=1

λi
1− λN+1

xi + λN+1xN+1

Using our assumption,
∑N

i=1
λi

1−λN+1
xi is an element in C. Therefore, the convexity

is proved.

Exercise 3 (4 Points). Let ∅ 6= X ⊂ Rn. Prove the equivalence of the following
statements:

• X is closed.

• Every convergent sequence {xn}n∈N ⊂ X attains its limit in X.

Solution. Let X be closed. By definition this means that the complement of X
given as XC := Rn \X is open meaning that for all x ∈ XC there exists ε > 0 s.t.
the ball Bε(x) is entirely contained in XC :

Bε(x) ∩X = ∅.

Suppose that there exists a convergent sequence X ⊃ {xn}n∈N → x with x /∈ X.
However, by definition of convergence for all ε > 0 there exists N ∈ N s.t.

X 3 xn ∈ Bε(x)

for all n ≥ N , which contradicts the assumption. Let conversely X not be closed
(not the same as open). That means there exists x /∈ X s.t. for all ε > 0 it holds
that Bε(x)∩X 6= ∅. This means that for all εn := 1

n
> 0 there exists xn ∈ Bε(x)∩X.

By construction we have a sequence {xn}n∈N converging to x /∈ X but with elements
in X.

Exercise 4 (8 Points). Some basic problems on calculus and linear algebra.

• Let u ∈ Rn, compute the gradient of following function on u: J(u) =
√
u>Au,

where A ∈ Rn×n is full rank and u 6= 0.

• What happens if A is not full rank?
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• Let z ∈ Rn, A ∈ Rn×n, f ∈ R and ε is a positive real number, compute the
gradient of following function on z:

R(z) =
z

f 2

√
f 2 ‖Az‖2 + ‖−z − 1〈x,Az〉‖2 + ε

and 1 = (1, 1, . . . , 1)> ∈ Rn.

Solution. • Using chain rule, we can get:

∇J(u) = (A+ A>)u

2
√
u>Au

• We need to ensure that the denominator is not 0. Therefore, when A is not
full rank, we need to ensure that u is not in null(A).

• Since the function is Rn → Rn, we need to compute the Jacobian matrix.
Applying chain rule, we can get:

JR(z) = diag
(

1

f 2

√
f 2 ‖Az‖2 + ‖−z − 1〈x,Az〉‖2 + ε

)

+
z

f 2

f 2A>Az + (I + A>x1>)>(z + 1x>Az)√
f 2 ‖Az‖2 + ‖−z − 1〈x,Az〉‖2 + ε

>

where I is the identity matrix.
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