Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 1

Room: 02.09.023
Wednesday, 30.10.2019, 12:15-14:00
Submission deadline: Monday, 28.10.2019, 16:15, Room 02.09.023

Theory: Convex Sets

(12+8 Points)

Exercise 1 (4 Points). Let \mathcal{C} be a family of convex sets in $\mathbb{R}^{n}, C_{1}, C_{2} \in \mathcal{C}, A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}, \lambda \in \mathbb{R}$. Prove convexity of the following sets:

- $\cap_{c \in C} C$
- $P:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$
- $C_{1}+C_{2}:=\left\{x+y: x \in C_{1}, y \in C_{2}\right\}$ (the Minkowski sum of C_{1} and C_{2})
- $\lambda C_{1}:=\left\{\lambda x: x \in C_{1}\right\}$ (the λ-dilatation of C_{1}).

Solution.

- Let $x_{1}, x_{2} \in \bigcap_{C \in \mathcal{C}} C$. Then $x_{1}, x_{2} \in C$ for all $C \in \mathcal{C}$. Since any C is convex, $\mu x_{1}+(1-\mu) x_{2} \in C$ for all $\mu \in[0,1]$ and $C \in \mathcal{C}$ and therefore $\mu x_{1}+(1-\mu) x_{2} \in$ $\bigcap_{C \in \mathcal{C}} C$.
- Let $x_{1}, x_{2} \in P$, which means that $A x_{1} \leq b$ and $A x_{2} \leq b$. Let $\mu \in[0,1]$. Then, $A\left(\mu x_{1}+(1-\mu) x_{2}\right)=\mu A x_{1}+(1-\mu) A x_{2} \leq \mu b+(1-\mu) b=b$. Therefore $\mu x_{1}+(1-\mu) x_{2} \in P$.
- Let $x, y \in C_{1}+C_{2}$. Then there exist $x_{1}, y_{1} \in C_{1}, x_{2}, y_{2} \in C_{2}$ so that $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$. Let $\mu \in[0,1]$. Then, since C_{1}, C_{2} convex $\mu x+(1-\mu) y=$ $\mu x_{1}+\mu x_{2}+(1-\mu) y_{1}+(1-\mu) y_{2}=\underbrace{\mu x_{1}+(1-\mu) y_{1}}_{\in C_{1}}+\underbrace{\mu x_{2}+(1-\mu) y_{2}}_{\in C_{2}} \in C_{1}+C_{2}$.
- Let $x, y \in C_{1}$ and $\mu \in[0,1]$. Then, since C_{1} convex, $\mu \lambda x+(1-\mu) \lambda y=$ $\lambda \underbrace{(\mu x+(1-\mu) y)}_{\in C_{1}} \in \lambda C_{1}$.

Exercise 2 (4 Points). Prove that if the set $C \subset \mathbb{R}^{n}$ is convex, then $\sum_{i=1}^{N} \lambda_{i} x_{i} \in C$ with $x_{1}, x_{2}, \ldots, x_{N} \in C$ and $0 \leq \lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}, \sum_{i=1}^{N} \lambda_{i}=1$.

Hint: Use induction to prove.

Solution. When $\mathrm{N}=2$, it directly follows the definition of convex set.
Assume it holds for N . Now consider $\mathrm{N}+1$ case:

$$
\sum_{i=1}^{N+1} \lambda_{i} x_{i}=\sum_{i=1}^{N} \lambda_{i} x_{i}+\lambda_{N+1} x_{N+1}
$$

If there exists a certain i such that $\lambda_{i}=0$, it will be N case which is assumed to hold. Therefore, all $\lambda_{i}>0$ and above equation turns into:

$$
\left(1-\lambda_{N+1}\right) \sum_{i=1}^{N} \frac{\lambda_{i}}{1-\lambda_{N+1}} x_{i}+\lambda_{N+1} x_{N+1}
$$

Using our assumption, $\sum_{i=1}^{N} \frac{\lambda_{i}}{1-\lambda_{N+1}} x_{i}$ is an element in C. Therefore, the convexity is proved.

Exercise 3 (4 Points). Let $\emptyset \neq X \subset \mathbb{R}^{n}$. Prove the equivalence of the following statements:

- X is closed.
- Every convergent sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ attains its limit in X.

Solution. Let X be closed. By definition this means that the complement of X given as $X_{C}:=\mathbb{R}^{n} \backslash X$ is open meaning that for all $x \in X_{C}$ there exists $\epsilon>0$ s.t. the ball $B_{\epsilon}(x)$ is entirely contained in X_{C} :

$$
B_{\epsilon}(x) \cap X=\emptyset .
$$

Suppose that there exists a convergent sequence $X \supset\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow x$ with $x \notin X$. However, by definition of convergence for all $\epsilon>0$ there exists $N \in \mathbb{N}$ s.t.

$$
X \ni x_{n} \in B_{\epsilon}(x)
$$

for all $n \geq N$, which contradicts the assumption. Let conversely X not be closed (not the same as open). That means there exists $x \notin X$ s.t. for all $\epsilon>0$ it holds that $B_{\epsilon}(x) \cap X \neq \emptyset$. This means that for all $\epsilon_{n}:=\frac{1}{n}>0$ there exists $x_{n} \in B_{\epsilon}(x) \cap X$. By construction we have a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converging to $x \notin X$ but with elements in X.

Exercise 4 (8 Points). Some basic problems on calculus and linear algebra.

- Let $u \in \mathbb{R}^{n}$, compute the gradient of following function on $u: J(u)=\sqrt{u^{\top} A u}$, where $A \in \mathbb{R}^{n \times n}$ is full rank and $u \neq 0$.
- What happens if A is not full rank?
- Let $z \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, f \in \mathbb{R}$ and ϵ is a positive real number, compute the gradient of following function on z :

$$
R(z)=\frac{z}{f^{2}} \sqrt{f^{2}\|A z\|^{2}+\|-z-\mathbb{1}\langle x, A z\rangle\|^{2}+\epsilon}
$$

and $\mathbb{1}=(1,1, \ldots, 1)^{\top} \in \mathbb{R}^{n}$.
Solution. - Using chain rule, we can get:

$$
\nabla J(u)=\frac{\left(A+A^{\top}\right) u}{2 \sqrt{u^{\top} A u}}
$$

- We need to ensure that the denominator is not 0 . Therefore, when A is not full rank, we need to ensure that u is not in $\operatorname{null}(A)$.
- Since the function is $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we need to compute the Jacobian matrix. Applying chain rule, we can get:

$$
\begin{aligned}
J_{R(z)} & =\operatorname{diag}\left(\frac{1}{f^{2}} \sqrt{f^{2}\|A z\|^{2}+\|-z-\mathbb{1}\langle x, A z\rangle\|^{2}+\epsilon}\right) \\
& +\frac{z}{f^{2}}\left(\frac{f^{2} A^{\top} A z+\left(I+A^{\top} x \mathbb{1}^{\top}\right)^{\top}\left(z+\mathbb{1} x^{\top} A z\right)}{\sqrt{f^{2}\|A z\|^{2}+\|-z-\mathbb{1}\langle x, A z\rangle\|^{2}+\epsilon}}\right)^{\top}
\end{aligned}
$$

where I is the identity matrix.

