Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Exercises: Zhenzhang Ye Winter Semester 2019/20

Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 10

Room: 02.09.023 Wednesday, 29.01.2020, 12:15-14:00 Submission deadline: Monday, 27.01.2020, 16:15, Room 02.09.023

Primal-Dual Methods

(8+6 Points)

Exercise 1 (4 Points). Consider the optimization problem

$$\min_{x \in \mathbb{R}^n} g(x) + \sum_{i=1}^k f_i(K_i x),$$
(1)

with $g: \mathbb{R}^n \to \overline{\mathbb{R}}, f_i: \mathbb{R}^{m_i} \to \overline{\mathbb{R}}$ closed, proper, convex and $K_i: \mathbb{R}^n \to \mathbb{R}^{m_i}$ linear. Assume that g and all f_i are *simple* in the sense that their proximal mapping

$$\operatorname{prox}_{\tau f_i}(y) := \operatorname{argmin}_{x \in \mathbb{R}^{m_i}} f_i(x) + \frac{1}{2\tau} \|x - y\|^2,$$

can be efficiently computed. Explain how (1) can be solved with PDHG and write down the explicit update equations.

Hint: Stack the individual K_i into a single matrix K.

Solution. The optimization problem (1) can be rewritten in the standard form as

$$\min_{x \in \mathbb{R}^n} g(x) + f(Kx), \tag{2}$$

where $K = \begin{bmatrix} K_1 \\ \vdots \\ K_k \end{bmatrix}$, and $f(z_1, \dots, z_k) = \sum_{i=1}^k f_i(z_i)$. The PDHG updates are given

by:

$$x^{t+1} = \operatorname{prox}_{\tau g}(x^{t} - \tau \sum_{i=1}^{k} K_{i}^{\top} y_{i}^{t}),$$

$$y_{i}^{t+1} = \operatorname{prox}_{\sigma f_{i}^{*}}(y_{i}^{t} + \sigma K_{i}(2x^{t+1} - x^{t})), \text{ for } 1 \le i \le k.$$
(3)

Exercise 2 (4 Points). Prove that the algorithm

$$u^{k+1} = \operatorname{prox}_{\tau G}(u^{k} - \tau K^{*} \bar{p}^{k}),$$

$$p^{k+1} = \operatorname{prox}_{\sigma F^{*}}(p^{k} + \sigma K u^{k+1}),$$

$$\bar{p}^{k+1} = 2p^{k+1} - p^{k}.$$
(PDHG*)

converges, and the limit of the u^k is a minimizer of G(u) + F(Ku) (with the same assumptions on F, G, and K as in the lecture).

Hint: Show that (PDHG^{*}) is equivalent to an algorithm we discussed in the lecture applied to a reformulated problem!

Solution. By Fenchel's Duality Theorem, computing $\min_u G(u) + F(Ku)$ is the same as computing $-\min_p G^*(-K^*p) + F^*(p)$, where the minimizers of the first and the second problem are related via $p \in \partial F(Ku)$. By replacing $G^*(-K^*p) = \sup_u \langle -K^*p, u \rangle - G(u)$, we find

$$\min_{u} G(u) + F(Ku) = -\min_{p} G^{*}(-K^{*}p) + F^{*}(p)$$
$$= -\min_{p} \max_{u} F^{*}(p) + \langle -Ku, p \rangle - G(u)$$

Applying the usual (PDHG) algorithm to the $\min_p \max_u$ in the second line yields (PDHG^{*}) for which we established the convergence in the lecture.

Exercise 3 (6 Points). Consider the *consensus optimization* problem:

$$\min_{\{x_i\}_{i=1}^l \subset \mathbb{R}^n, x_0 \in \mathbb{R}^n} \sum_{i=1}^l f_i(x_i)$$
subject to $x_i = x_0 \quad \forall i \in \{1, 2, ..., l\}.$

$$(4)$$

Here each function $f_i : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is proper, convex, and lower-semicontinuous.

- Write down the augmented Lagrangian functional for (4) (which will involve multipliers {y_i}^l_{i=1} ⊂ ℝⁿ).
- Formulate an alternating direction of multipliers (ADMM) method for (4). Update the variables in the order of $\{x_i\}_{i=1}^l, \{y_i\}_{i=1}^l, x_0$.

Solution. • Augmented Lagrangian is defined as:

$$\mathcal{L}_{\tau}(x_0, \{x_i\}_{i=1}^l, \{y_i\}_{i=1}^l) = \sum_{i=1}^l \left(f_i(x_i) - \langle y_i, x_i - x_0 \rangle + \frac{\tau}{2} \|x_i - x_0\|_2^2 \right)$$

with $\tau > 0$.

• ADMM can be formulated as:

$$x_{i}^{k+1} = \arg\min_{x_{i}} f_{i}(x_{i}) - \langle y_{i}^{k}, x_{i} \rangle + \frac{\tau}{2} \|x_{i} - x_{0}^{k}\|_{2}^{2}$$
$$= (\partial f_{i} + \tau I)^{-1} (\tau x_{0}^{k} + y_{i}^{k}) \quad \forall i \in \{1, ..., l\},$$
(5)

$$y_i^{k+1} = y_i^k - \tau(x_i^{k+1} - x_0^k) \quad \forall i \in \{1, ..., l\},$$
(6)

$$x_{0}^{k+1} = \arg\min_{x_{0}} \sum_{i=1}^{r} \left(\langle y_{i}^{k+1}, x_{0} \rangle + \frac{\tau}{2} \| x_{i}^{k+1} - x_{0} \|_{2}^{2} \right)$$
$$= \frac{1}{l} \sum_{i=1}^{l} \left(x_{i}^{k+1} - \frac{1}{\tau} y_{i}^{k+1} \right).$$
(7)