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Primal-Dual Methods (8+6 Points)
Exercise 1 (4 Points). Consider the optimization problem

min
x∈Rn

g(x) +
k∑
i=1

fi(Kix), (1)

with g : Rn → R, fi : Rmi → R closed, proper, convex and Ki : Rn → Rmi linear.
Assume that g and all fi are simple in the sense that their proximal mapping

proxτfi(y) := argminx∈Rmi fi(x) +
1

2τ
‖x− y‖2 ,

can be efficiently computed. Explain how (1) can be solved with PDHG and write
down the explicit update equations.
Hint: Stack the individual Ki into a single matrix K.

Solution. The optimization problem (1) can be rewritten in the standard form as

min
x∈Rn

g(x) + f(Kx), (2)

where K =

K1
...
Kk

, and f(z1, . . . , zk) =
∑k

i=1 fi(zi). The PDHG updates are given

by:

xt+1 = proxτg(x
t − τ

k∑
i=1

K>i y
t
i),

yt+1
i = proxσf∗i (yti + σKi(2x

t+1 − xt)), for 1 ≤ i ≤ k.

(3)

Exercise 2 (4 Points). Prove that the algorithm

uk+1 = proxτG(uk − τK∗p̄k),
pk+1 = proxσF ∗(pk + σKuk+1),

p̄k+1 = 2pk+1 − pk.
(PDHG*)
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converges, and the limit of the uk is a minimizer of G(u) + F (Ku) (with the same
assumptions on F , G, and K as in the lecture).

Hint: Show that (PDHG*) is equivalent to an algorithm we discussed in the
lecture applied to a reformulated problem!

Solution. By Fenchel’s Duality Theorem, computing minuG(u) + F (Ku) is the
same as computing −minpG

∗(−K∗p) + F ∗(p), where the minimizers of the first
and the second problem are related via p ∈ ∂F (Ku). By replacing G∗(−K∗p) =
supu〈−K∗p, u〉 −G(u), we find

min
u
G(u) + F (Ku) = −min

p
G∗(−K∗p) + F ∗(p)

= −min
p

max
u

F ∗(p) + 〈−Ku, p〉 −G(u)

Applying the usual (PDHG) algorithm to the minp maxu in the second line yields
(PDHG*) for which we established the convergence in the lecture.

Exercise 3 (6 Points). Consider the consensus optimization problem:

min
{xi}li=1⊂Rn, x0∈Rn

l∑
i=1

fi(xi)

subject to xi = x0 ∀i ∈ {1, 2, ..., l}.
(4)

Here each function fi : Rn → R ∪ {∞} is proper, convex, and lower-semicontinuous.

• Write down the augmented Lagrangian functional for (4) (which will involve
multipliers {yi}li=1 ⊂ Rn).

• Formulate an alternating direction of multipliers (ADMM) method for (4).
Update the variables in the order of {xi}li=1, {yi}li=1, x0.

Solution. • Augmented Lagrangian is defined as:

Lτ (x0, {xi}li=1, {yi}li=1) =
l∑

i=1

(
fi(xi)− 〈yi, xi − x0〉+

τ

2
‖xi − x0‖22

)
with τ > 0.

• ADMM can be formulated as:

xk+1
i = arg min

xi
fi(xi)− 〈yki , xi〉+

τ

2
‖xi − xk0‖22

= (∂fi + τI)−1(τxk0 + yki ) ∀i ∈ {1, ..., l}, (5)
yk+1
i = yki − τ(xk+1

i − xk0) ∀i ∈ {1, ..., l}, (6)

xk+1
0 = arg min

x0

l∑
i=1

(
〈yk+1
i , x0〉+

τ

2
‖xk+1

i − x0‖22
)

=
1

l

l∑
i=1

(
xk+1
i − 1

τ
yk+1
i

)
. (7)
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