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Primal-Dual Methods (8+6 Points)

Exercise 1 (4 Points). Consider the optimization problem

PISING

min g(z) +Z fi(Kiz), (1)

with ¢ : R* = R, f; : R™ — R closed, proper, convex and K, : R* — R™ linear.
Assume that g and all f; are simple in the sense that their proximal mapping
. 1 2
10, (1) = argmin, e, fi(x) + o o —

can be efficiently computed. Explain how (1) can be solved with PDHG and write
down the explicit update equations.
Hint: Stack the individual K; into a single matrix K.

Solution. The optimization problem (1) can be rewritten in the standard form as

min g(z) + f(K), (2)
K

where K = | 1 |, and f(z1,...,2) = 3., fi(z). The PDHGC updates are given
K,

by:

k
xt+1 = pI‘OXTg(.Tt - T Z K;yf), (3)
=1

yf“ — proxaf_*(yf + o K22 —2t)), for 1 <i <k.

Exercise 2 (4 Points). Prove that the algorithm

uFtt = prox, o (u* — TK*pY),
PP = prox, p. (pF + o Ku"), (PDHG*)
P = opht



converges, and the limit of the u* is a minimizer of G(u) + F(Ku) (with the same
assumptions on F'; G, and K as in the lecture).

Hint: Show that (PDHG*) is equivalent to an algorithm we discussed in the
lecture applied to a reformulated problem!

Solution. By Fenchel’s Duality Theorem, computing min, G(u) + F(Ku) is the
same as computing — min, G*(—K*p) + F*(p), where the minimizers of the first
and the second problem are related via p € 0F(Ku). By replacing G*(—K*p) =
sup, (—K*p,u) — G(u), we find

min G(u) + F(Ku) = = min G*(=K"p) + F*(p)
= —minmax F*(p) + (—Ku, p) — G(u)

P u

Applying the usual (PDHG) algorithm to the min, max, in the second line yields
(PDHG*) for which we established the convergence in the lecture.

Exercise 3 (6 Points). Consider the consensus optimization problem:
!
{z;}l_, CR", zoER™ ; ( ) (4)
subject to z; =xo Vi€ {l,2,...,1}.
Here each function f; : R — R U {oc} is proper, convex, and lower-semicontinuous.
e Write down the augmented Lagrangian functional for (4) (which will involve
multipliers {y;}\_, C R").
e Formulate an alternating direction of multipliers (ADMM) method for (4).
Update the variables in the order of {z;}_,, {y:}\_,, zo.

Solution. e Augmented Lagrangian is defined as:

l

-
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with 7 > 0.

e ADMM can be formulated as:

. T
oyt = argmin fi(w:) — (), 2) + glle: — 253
= (0f;i + D) Nrak +uF) Vie{1,..,1}, (5)
ylk—&-l = yf - ( i’H—l - J’JS) Vi€ {17 "'7l}7 (6)
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