Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 10

Room: 02.09.023
Wednesday, 29.01.2020, 12:15-14:00
Submission deadline: Monday, 27.01.2020, 16:15, Room 02.09.023

Primal-Dual Methods

Exercise 1 (4 Points). Consider the optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} g(x)+\sum_{i=1}^{k} f_{i}\left(K_{i} x\right) \tag{1}
\end{equation*}
$$

with $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, f_{i}: \mathbb{R}^{m_{i}} \rightarrow \overline{\mathbb{R}}$ closed, proper, convex and $K_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{i}}$ linear. Assume that g and all f_{i} are simple in the sense that their proximal mapping

$$
\operatorname{prox}_{\tau f_{i}}(y):=\operatorname{argmin}_{x \in \mathbb{R}^{m_{i}}} f_{i}(x)+\frac{1}{2 \tau}\|x-y\|^{2},
$$

can be efficiently computed. Explain how (1) can be solved with PDHG and write down the explicit update equations.
Hint: Stack the individual K_{i} into a single matrix K.
Solution. The optimization problem (1) can be rewritten in the standard form as

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} g(x)+f(K x) \tag{2}
\end{equation*}
$$

where $K=\left[\begin{array}{c}K_{1} \\ \vdots \\ K_{k}\end{array}\right]$, and $f\left(z_{1}, \ldots, z_{k}\right)=\sum_{i=1}^{k} f_{i}\left(z_{i}\right)$. The PDHG updates are given by:

$$
\begin{align*}
& x^{t+1}=\operatorname{prox}_{\tau g}\left(x^{t}-\tau \sum_{i=1}^{k} K_{i}^{\top} y_{i}^{t}\right) \tag{3}\\
& y_{i}^{t+1}=\operatorname{prox}_{\sigma f_{i}^{*}}\left(y_{i}^{t}+\sigma K_{i}\left(2 x^{t+1}-x^{t}\right)\right), \text { for } 1 \leq i \leq k
\end{align*}
$$

Exercise 2 (4 Points). Prove that the algorithm

$$
\begin{align*}
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} \bar{p}^{k}\right), \\
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K u^{k+1}\right), \tag{PDHG*}\\
\bar{p}^{k+1} & =2 p^{k+1}-p^{k} .
\end{align*}
$$

converges, and the limit of the u^{k} is a minimizer of $G(u)+F(K u)$ (with the same assumptions on F, G, and K as in the lecture).

Hint: Show that (PDHG ${ }^{*}$) is equivalent to an algorithm we discussed in the lecture applied to a reformulated problem!
Solution. By Fenchel's Duality Theorem, computing $\min _{u} G(u)+F(K u)$ is the same as computing $-\min _{p} G^{*}\left(-K^{*} p\right)+F^{*}(p)$, where the minimizers of the first and the second problem are related via $p \in \partial F(K u)$. By replacing $G^{*}\left(-K^{*} p\right)=$ $\sup _{u}\left\langle-K^{*} p, u\right\rangle-G(u)$, we find

$$
\begin{aligned}
\min _{u} G(u)+F(K u) & =-\min _{p} G^{*}\left(-K^{*} p\right)+F^{*}(p) \\
& =-\min _{p} \max _{u} F^{*}(p)+\langle-K u, p\rangle-G(u)
\end{aligned}
$$

Applying the usual (PDHG) algorithm to the $\min _{p} \max _{u}$ in the second line yields (PDHG*) for which we established the convergence in the lecture.

Exercise 3 (6 Points). Consider the consensus optimization problem:

$$
\begin{align*}
\min _{\left\{x_{i}\right\}_{i=1}^{l} \subset \mathbb{R}^{n}, x_{0} \in \mathbb{R}^{n}} & \sum_{i=1}^{l} f_{i}\left(x_{i}\right) \tag{4}\\
\text { subject to } & x_{i}=x_{0} \quad \forall i \in\{1,2, \ldots, l\}
\end{align*}
$$

Here each function $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is proper, convex, and lower-semicontinuous.

- Write down the augmented Lagrangian functional for (4) (which will involve multipliers $\left\{y_{i}\right\}_{i=1}^{l} \subset \mathbb{R}^{n}$).
- Formulate an alternating direction of multipliers (ADMM) method for (4). Update the variables in the order of $\left\{x_{i}\right\}_{i=1}^{l},\left\{y_{i}\right\}_{i=1}^{l}, x_{0}$.
Solution. - Augmented Lagrangian is defined as:

$$
\mathcal{L}_{\tau}\left(x_{0},\left\{x_{i}\right\}_{i=1}^{l},\left\{y_{i}\right\}_{i=1}^{l}\right)=\sum_{i=1}^{l}\left(f_{i}\left(x_{i}\right)-\left\langle y_{i}, x_{i}-x_{0}\right\rangle+\frac{\tau}{2}\left\|x_{i}-x_{0}\right\|_{2}^{2}\right)
$$

with $\tau>0$.

- ADMM can be formulated as:

$$
\begin{align*}
x_{i}^{k+1} & =\arg \min _{x_{i}} f_{i}\left(x_{i}\right)-\left\langle y_{i}^{k}, x_{i}\right\rangle+\frac{\tau}{2}\left\|x_{i}-x_{0}^{k}\right\|_{2}^{2} \\
& =\left(\partial f_{i}+\tau I\right)^{-1}\left(\tau x_{0}^{k}+y_{i}^{k}\right) \quad \forall i \in\{1, \ldots, l\}, \tag{5}\\
y_{i}^{k+1} & =y_{i}^{k}-\tau\left(x_{i}^{k+1}-x_{0}^{k}\right) \quad \forall i \in\{1, \ldots, l\}, \tag{6}\\
x_{0}^{k+1} & =\arg \min _{x_{0}} \sum_{i=1}^{l}\left(\left\langle y_{i}^{k+1}, x_{0}\right\rangle+\frac{\tau}{2}\left\|x_{i}^{k+1}-x_{0}\right\|_{2}^{2}\right) \\
& =\frac{1}{l} \sum_{i=1}^{l}\left(x_{i}^{k+1}-\frac{1}{\tau} y_{i}^{k+1}\right) . \tag{7}
\end{align*}
$$

