Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu

Exercises: Zhenzhang Ye

Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 11

Room: 02.09.023

Wednesday, 05.02.2020, 12:15 - 14:00

Submission deadline: Monday, 03.02.2020, 16:15, Room 02.09.023

1 Convergence

(6+6 Points)

Exercise 1 (6 Points). Denote $\Pi_C(x)$ as the projection of point x onto a nonempty closed convex set C. Show following properties:

- Π_C is a monotone operator.
- T is firmly nonexpansive, if and only if $||Tx Ty||^2 \le \langle x y, Tx Ty \rangle$, $\forall x, y$.
- Π_C is firmly nonexpansive. Hint: you might use that $\langle y - \Pi_C(x), x - \Pi_C(x) \rangle \leq 0, \forall y \in C$
- **Solution.** For any two points u and v, using the definition of projection, we have that $\|u \Pi_C(u)\|^2 \le \|u \Pi_C(v)\|^2$ and $\|v \Pi_C(v)\|^2 \le \|v \Pi_C(u)\|^2$. Summing them up, we have $\|u \Pi_C(u)\|^2 + \|v \Pi_C(v)\|^2 \le \|u \Pi_C(v)\|^2 + \|v \Pi_C(u)\|^2$.

Expanding the squares, we can get the monotonicity of Π_C .

• Recall the proposition of $\frac{1}{2}$ -averaged:

$$||(I - T)x - (I - T)y||^2 + ||Tx - Ty||^2 \le ||x - y||^2$$

Write $||(I - T)x - (I - T)Y||^2 = ||x - y||^2 + ||Tx - Ty||^2 - 2\langle x - y, Tx - Ty \rangle$, we can achieve the conclusion.

• For two points x and y, using the hint we get $\langle \Pi_C(y) - \Pi_C(x), x - \Pi_C(x) \rangle \leq 0$ and $\langle \Pi_C(x) - \Pi_C(y), y - \Pi_C(y) \rangle \leq 0$. Adding these two yields $\|\Pi_C(x) - \Pi_C(y)\|^2 \leq \langle x - y, \Pi_C(x) - \Pi_C(y) \rangle$. Use the conclusion from second problem, we get the conclusion.

Exercise 2 (6 Points). Prove the Krasnoselskii-Mann Theorem: Let C be a nonempty, closed, convex subset of \mathbb{E} , and $u^{k+1} = (1-\tau^k)u^k + \tau^k\Psi(u^k)$ for k=0,1,2,... where $\{\tau^k\} \subset [0,1]$ s.t.

$$\sum_{k=0}^{\infty} \tau^k (1 - \tau^k) = \infty,$$

and $\Psi: C \to C$ satisfies:

- 1. Ψ is nonexpansive.
- 2. Ψ has at least one fixed point.

Then $\{u^k\}$ converges to a fixed point of Ψ .

Solution. see lecture notes

TV- ℓ_1 denoising (Due: 10.02)

This time, we have an image with salt-and-pepper noise. Therefore, we use ℓ_1 norm for the data term.

$$\operatorname{argmin}_{u \in \mathbb{R}^N} \|u - f\|_1 + \rho \|Ku\|_1$$

where $f \in \mathbb{R}^N$ is the input image with N pixels, ρ is a scalar weighting the smooth regularizor and K is the gradient operator.

Your task is to apply PDHG to solve above problem.

Hint: for choosing the step size, consider the inequality:

$$||A|| \le \sqrt{\max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| \max_{1 \le i \le m} \sum_{j=1}^{m} |a_{ij}|},$$

where $A \in \mathbb{R}^{m \times n}$.