Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 11

Room: 02.09.023
Wednesday, 05.02.2020, 12:15-14:00
Submission deadline: Monday, 03.02.2020, 16:15, Room 02.09.023

1 Convergence

Exercise 1 (6 Points). Denote $\Pi_{C}(x)$ as the projection of point x onto a nonempty closed convex set C. Show following properties:

- Π_{C} is a monotone operator.
- T is firmly nonexpansive, if and only if $\|T x-T y\|^{2} \leq\langle x-y, T x-T y\rangle, \forall x, y$.
- Π_{C} is firmly nonexpansive.

Hint: you might use that $\left\langle y-\Pi_{C}(x), x-\Pi_{C}(x)\right\rangle \leq 0, \forall y \in C$
Solution. - For any two points u and v, using the definition of projection, we have that $\left\|u-\Pi_{C}(u)\right\|^{2} \leq\left\|u-\Pi_{C}(v)\right\|^{2}$ and $\left\|v-\Pi_{C}(v)\right\|^{2} \leq\left\|v-\Pi_{C}(u)\right\|^{2}$. Summing them up, we have $\left\|u-\Pi_{C}(u)\right\|^{2}+\left\|v-\Pi_{C}(v)\right\|^{2} \leq\left\|u-\Pi_{C}(v)\right\|^{2}+$ $\left\|v-\Pi_{C}(u)\right\|^{2}$.
Expanding the squares, we can get the monotonicity of Π_{C}.

- Recall the proposition of $\frac{1}{2}$-averaged:

$$
\|(I-T) x-(I-T) y\|^{2}+\|T x-T y\|^{2} \leq\|x-y\|^{2}
$$

Write $\|(I-T) x-(I-T) Y\|^{2}=\|x-y\|^{2}+\|T x-T y\|^{2}-2\langle x-y, T x-T y\rangle$, we can achieve the conclusion.

- For two points x and y, using the hint we get $\left\langle\Pi_{C}(y)-\Pi_{C}(x), x-\Pi_{C}(x)\right\rangle \leq 0$ and $\left\langle\Pi_{C}(x)-\Pi_{C}(y), y-\Pi_{C}(y)\right\rangle \leq 0$. Adding these two yields $\left\|\Pi_{C}(x)-\Pi_{C}(y)\right\|^{2} \leq$ $\left\langle x-y, \Pi_{C}(x)-\Pi_{C}(y)\right\rangle$. Use the conclusion from second problem, we get the conclusion.

Exercise 2 (6 Points). Prove the Krasnoselskii-Mann Theorem: Let C be a nonempty, closed, convex subset of \mathbb{E}, and $u^{k+1}=\left(1-\tau^{k}\right) u^{k}+\tau^{k} \Psi\left(u^{k}\right)$ for $k=0,1,2, \ldots$ where $\left\{\tau^{k}\right\} \subset[0,1]$ s.t.

$$
\sum_{k=0}^{\infty} \tau^{k}\left(1-\tau^{k}\right)=\infty
$$

and $\Psi: C \rightarrow C$ satisfies:

1. Ψ is nonexpansive.
2. Ψ has at least one fixed point.

Then $\left\{u^{k}\right\}$ converges to a fixed point of Ψ.
Solution. see lecture notes

TV- ℓ_{1} denoising (Due: 10.02)

This time, we have an image with salt-and-pepper noise. Therefore, we use ℓ_{1} norm for the data term.

$$
\operatorname{argmin}_{u \in \mathbb{R}^{N}}\|u-f\|_{1}+\rho\|K u\|_{1}
$$

where $f \in \mathbb{R}^{N}$ is the input image with N pixels, ρ is a scalar weighting the smooth regularizor and K is the gradient operator.
Your task is to apply PDHG to solve above problem.
Hint: for choosing the step size, consider the inequality:

$$
\|A\| \leq \sqrt{\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right| \max _{1 \leq i \leq m} \sum_{j=1}^{m}\left|a_{i j}\right|}
$$

where $A \in \mathbb{R}^{m \times n}$.

