Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 4

Room: 02.09.023
Wednesday, 20.11.2019, 12:15-14:00
Submission deadline: Monday, 18.11.2019, 16:15, Room 02.09.023

Convex conjugate

($14+6$ Points)
Exercise 1 (4 points). Let $A \in \mathbb{R}^{n \times n}$ be orthonormal, meaning that $A^{\top} A=A A^{\top}=$ I. Let the convex set C be given as

$$
C:=\left\{u \in \mathbb{R}^{n}:\|A u\|_{\infty} \leq 1\right\} .
$$

Compute a formula for the projection onto C given as

$$
\Pi_{C}(v):=\operatorname{argmin}_{u \in \mathbb{R}^{n}} \frac{1}{2}\|u-v\|_{2}^{2}, \quad \text { s.t. } u \in C .
$$

Hint: Show that the ℓ_{2}-norm of a vector is invariant under a multiplication with an orthonormal matrix A, meaning that $\|u\|_{2}=\|A u\|_{2}$.

Solution. We begin proving the hint:

$$
\|A x\|_{2}^{2}=\langle A x, A x\rangle=\left\langle A^{\top} A x, x\right\rangle=\langle x, x\rangle=\|x\|_{2}^{2}
$$

The idea is to rewrite the projection onto the set C in terms of the projection $\Pi_{\tilde{C}}$ onto the unit ball of the ℓ_{∞}-norm $\tilde{C}:=\left\{x \in \mathbb{R}^{n}:\|x\|_{\infty} \leq 1\right\}$. With the substitution

$$
w:=A u \Longleftrightarrow u=A^{\top} w
$$

and using the hint we obtain:

$$
\begin{aligned}
\Pi_{C}(v) & =\operatorname{argmin}_{\|A u\|_{\infty} \leq 1} \frac{1}{2}\|v-u\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\left\|v-A^{\top} w\right\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\left\|A\left(v-A^{\top} w\right)\right\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\left\|A v-A A^{\top} w\right\|^{2} \\
& =A^{\top} \operatorname{argmin}_{\|w\|_{\infty} \leq 1} \frac{1}{2}\|A v-w\|^{2} \\
& =A^{\top} \Pi_{\tilde{C}}(A v) .
\end{aligned}
$$

Exercise 2 (6 points). Assume $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$, compute the convex conjugate of following functions:

- $J(u)=\left.\frac{1}{q}\left|\|u\|_{q}^{q}=\sum_{i=1}^{n} \frac{1}{q}\right| u_{i}\right|^{q}, q \in[1,+\infty]$.
- $J(u)=\sum_{i=1}^{n} u_{i} \log u_{i}+\delta_{\Delta^{n-1}}(u)$.
- $J(u)= \begin{cases}\frac{1}{2}\|u\|_{2}^{2}, & \|u\|_{2} \leq \epsilon \\ +\infty, & \text { otherwise }\end{cases}$

Solution. - Assume $q \in(1,+\infty), J^{*}(v)=\sup _{u}\langle u, v\rangle-J(u)$. Since it is separable, we apply first-order optimality condition elementwisely:

$$
\sup _{u_{i}}\left\langle u_{i}, v_{i}\right\rangle-\frac{1}{q}\left(\left|u_{i}\right|\right)^{q} \Rightarrow 0=v_{i}-\left|u_{i}\right|^{q-1} \operatorname{sign}\left(u_{i}\right) \Rightarrow u_{i}=\left|v_{i}\right|^{1 /(q-1)} \operatorname{sign}\left(v_{i}\right)
$$

Substitute u_{i} back to the first equation, we have

$$
\begin{aligned}
J^{*}(v)_{i} & =\left|v_{i}\right|^{q /(q-1)}-\frac{1}{q}\left|v_{i}\right|^{q /(q-1)} \\
& =\left(1-\frac{1}{q}\right)\left|v_{i}\right|^{q /(q-1)} \\
& =\left(1-\frac{1}{q}\right)\left|v_{i}\right|^{1 /\left(1-\frac{1}{q}\right)}
\end{aligned}
$$

Substituting $\frac{1}{p}=1-\frac{1}{q}$, we get $J^{*}(v)=\frac{1}{p}\|v\|_{p}^{p}$.
Now, consider $q=1$, we have $J^{*}(v)=\sup _{u}\langle u, v\rangle-\|u\|_{1}=\sum_{i=1}^{n} \sup _{u_{i}} u_{i}\left(v_{i}-\right.$ $\operatorname{sign}(u))$. The result will be

$$
J^{*}(v)= \begin{cases}0, & \|v\|_{\infty} \leq 1 \\ \infty, & \text { otherwise }\end{cases}
$$

For $q=+\infty, J(u)=\|u\|_{\infty}$ and $J^{*}(v)=\sup _{u}\langle u, v\rangle-\max _{j}\left|u_{j}\right|$. Compute the subdifferential we hope to get: $v \in\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1,\langle x, u\rangle=\|u\|_{\infty}\right\}$.
Therefore, if $\|v\|_{1} \leq 1$, we can find a u such that v is in the set. We achieve $J^{*}(v)=0$. Otherwise, we can choose $u_{i}=t \operatorname{sign}\left(v_{i}\right)$ where $t>0$ is a scalar. We can make $J^{*}(v) \rightarrow+\infty$ as $t \rightarrow+\infty$.
The result is then:

$$
J^{*}(v)= \begin{cases}0, & \|v\|_{1} \leq 1 \\ \infty, & \text { otherwise }\end{cases}
$$

- Consider the convex conjugate elementwisely: $J^{*}(v)=\sup _{u} \sum_{i}^{n} u_{i} v_{i}-u_{i} \log u_{i}-$ $\delta_{\Delta^{n-1}}(u)$. Let's consider the following minimization problem given v_{i} :

$$
\begin{aligned}
& \min _{u} \sum_{i}^{n} u_{i} \log u_{i}-u_{i} v_{i} \\
& \text { s.t. } \mathbb{1} u=1
\end{aligned}
$$

where $\mathbb{1}=[1, \ldots, 1] \in \mathbb{R}^{n}$. It is obvious that this two problems share the same optimal variable u^{*} and the domain of \log implies $u_{i}>0$. Since the feasible set is compact and original energy function is continuous, the KKT condition holds on u^{*}. Therefore, we have certain $\lambda \in \mathbb{R}$ such that

$$
\log u_{i}^{*}+1-v_{i}+\lambda=0, \forall i=1, \ldots, n
$$

which give $u_{i}^{*}=\exp \left\{-\lambda+v_{i}-1\right\}$. Additionally, $\sum_{i=1}^{n} u_{i}^{*}=1$. We can get
$0=\log \left(\sum_{i=1}^{n} \exp \left\{-\lambda+v_{i}-1\right\}\right)=\log \left(\exp \{-\lambda-1\} \sum_{i=1}^{n} e^{v_{i}}\right)=(-\lambda-1)+\log \left(\sum_{i=1}^{n} e^{v_{i}}\right)$
Now, substitute u^{*} back into the convex conjugate and we can get

$$
\begin{aligned}
J(v)^{*} & =\sum_{i}^{n} \exp \left\{-\lambda+v_{i}-1\right\} v_{i}-\exp \left\{-\lambda+v_{i}-1\right\}\left(-\lambda+v_{i}-1\right) \\
& =\sum_{i}^{n}-\exp \left\{-\lambda+v_{i}-1\right\}(-\lambda-1) \\
& =-(-\lambda-1)=\log \left(\sum_{i=1}^{n} e^{v_{i}}\right)
\end{aligned}
$$

- Rewrite the convex conjugate as $J^{*}(v)=\sup _{\|u\|_{2} \leq \epsilon}\langle u, v\rangle-\frac{1}{2}\|u\|_{2}^{2}$. We first try to find the corresponding u^{*}.

$$
\begin{aligned}
u^{*} & =\operatorname{argmin}_{\|u\|_{2} \leq \epsilon} \frac{1}{2}\|u\|_{2}^{2}-\langle u, v\rangle+\frac{1}{2}\|v\|_{2}^{2} \\
& =\operatorname{argmin}_{\|u\|_{2} \leq \epsilon} \frac{1}{2}\|u-v\|_{2}^{2}
\end{aligned}
$$

which is a projection problem i.e. project v into a convex set $\left\{u:\|u\|_{2} \leq \epsilon\right\}$. Therefore, if $\|v\|_{2} \leq \epsilon, u^{*}=v$. Otherwise, $u^{*}=\epsilon \frac{v}{\|v\|}$.

$$
J^{*}(v)= \begin{cases}\frac{1}{2}\|v\|_{2}^{2}, & \|v\|_{2} \leq \epsilon \\ \epsilon\|v\|_{2}^{2}-\frac{1}{2} \epsilon^{2}, & \text { otherwise }\end{cases}
$$

Exercise 3 (4 points). Show that projection onto a convex set is Lipschitz continuous with constant equals 1, i.e.

$$
\left\|\Pi_{C}(u)-\Pi_{C}(v)\right\| \leq\|u-v\|, \forall u, v \in \mathbb{E}
$$

where C is a convex set.
Solution. Given a point u, recall the property of projection:

$$
\left\langle u-\Pi_{C}(u), x-\Pi_{C}(u)\right\rangle \leq 0, \quad \forall x \in C
$$

Since $\Pi_{C}(v)$ is also an element in C, we get:

$$
\left\langle u-\Pi_{C}(u), \Pi_{C}(v)-\Pi_{C}(u)\right\rangle \leq 0
$$

As same as above, we can get the ineuqlity for point v :

$$
\left\langle v-\Pi_{C}(v), \Pi_{C}(u)-\Pi_{C}(v)\right\rangle \leq 0 .
$$

Sum above inequalities up, we have:

$$
\begin{aligned}
& \left\langle u-\Pi_{C}(u)+\Pi_{C}(v)-v, \Pi_{C}(v)-\Pi_{C}(u)\right\rangle \leq 0 \\
\Rightarrow & \left\langle\Pi_{C}(v)-\Pi_{C}(u), \Pi_{C}(v)-\Pi_{C}(u)\right\rangle \leq\left\langle v-u, \Pi_{C}(v)-\Pi_{C}(u)\right\rangle \\
\Rightarrow & \left\|\Pi_{C}(v)-\Pi_{C}(u)\right\|^{2} \leq\|v-u\|\left\|\Pi_{C}(v)-\Pi_{C}(u)\right\| \\
\Rightarrow & \left\|\Pi_{C}(v)-\Pi_{C}(u)\right\| \leq\|v-u\|
\end{aligned}
$$

Exercise 4 (6 points). Let $C_{i}, 1 \leq i \leq n$ be a family of closed convex sets such that

$$
\bigcap_{1 \leq i \leq n} C_{i} \neq \emptyset
$$

Show that the problem of finding an element u^{*} in the intersection

$$
u^{*} \in \bigcap_{1 \leq i \leq n} C_{i}
$$

can be formulated as the following optimization problem:

$$
u^{*} \in \arg \min _{u \in \bigcap_{i \in \mathcal{I}} C_{i}} \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u, C_{j}\right),
$$

where $\mathcal{I} \subseteq\{1,2, \ldots, n\}$ can be arbitrary (including the empty set) and $d(z, X)$ is the distance of a point z to the closed convex set X defined as

$$
d(z, X):=\min _{x \in X}\|x-z\|_{2} .
$$

Solution. Since all C_{i} are closed and convex, $d\left(u, C_{i}\right)$ is well defined. Since $d^{2}\left(u, C_{j}\right) \geq$ 0 and $d^{2}\left(u, C_{j}\right)=0 \Longleftrightarrow u \in C_{j}$,

$$
u \in \bigcap_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} C_{j} \Longleftrightarrow \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u, C_{j}\right)=0
$$

This yields that

$$
0=\sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u^{*}, C_{j}\right)+\delta_{\bigcap_{i \in \mathcal{I}} C_{i}}\left(u^{*}\right)
$$

iff $u^{*} \in \bigcap_{1 \leq i \leq n} C_{i}$. Since $\bigcap_{1 \leq i \leq n} C_{i}$ non-empty

$$
\operatorname{argmin}_{u \in \bigcap_{i \in \mathcal{I}} C_{i}} \sum_{\substack{j \notin \mathcal{I} \\ 1 \leq j \leq n}} d^{2}\left(u, C_{j}\right) \subset \bigcap_{1 \leq i \leq n} C_{i} .
$$

Programming: SUDOKU(Due: 25.11) (12 Points)

Exercise 5 (12 Points). Solve the SUDOKU given in the file exampleSudoku1.mat (sudoku array in python) with projected gradient descent. The algorithm is already given, you only need to figure out the correct formulation.
We represent a SUDOKU as a matrix $\boldsymbol{u} \in\{0,1\}^{9 \times 9 \times 9}$, where $\boldsymbol{u}_{i, j, k}=1$ means $\boldsymbol{u}_{i, j}=k$, i.e. we fill number k on position (i, j). Therefore, we have following rules, where $f_{i, j}$ are the given entries and B_{l} is a 9×9 block:

1. Respect given entries: $\boldsymbol{u}_{i, j, k}=1$, if $f_{i, j}=k$
2. One number for each blank spot: $\sum_{k} \boldsymbol{u}_{i, j, k}=1, \forall i, j$
3. Numbers occur in a row once: $\sum_{j} \boldsymbol{u}_{i, j, k}=1, \forall i, k$
4. Numbers occur in a column once: $\sum_{i} \boldsymbol{u}_{i, j, k}=1, \forall j, k$
5. Numbers occur in a block once: $\sum_{(i, j) \in B_{l}} \boldsymbol{u}_{i, j, k}=1, \forall B_{l}, k$

First of all, since the feasible set of u is non-convex, we perform a convex relaxation on it such that $\boldsymbol{u}_{i, j, k} \in[0,1]$.
Since constraints $2-5$ are linear and using the idea from exercise 4, we can vectorize u and try to find a linear operator A, the opimal u^{*} should satisfy $A u^{*}=1$. The problem then can be converted into following convex minimization one:

$$
\begin{aligned}
& \qquad u^{*}=\operatorname{argmin}_{u} \frac{1}{2}\|A u-1\|^{2}, \\
& \text { s.t. } u_{i j k} \in[0,1] \\
& \quad u_{i j k}=1 \text { if } f_{i j}=k .
\end{aligned}
$$

Your task here is try to figure out the linear operator A, such that if u is a valid solution then $A u=1$.
Hint: 1. How the optimal u^{*} look like?
2. We vectorize u, therefore figure out the dimension of A first.
3. Starting from the third constraint, how A should look like only for that constraint?

