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Convex conjugate (14+6 Points)
Exercise 1 (4 points). Let A ∈ Rn×n be orthonormal, meaning that A>A = AA> =
I. Let the convex set C be given as

C := {u ∈ Rn : ‖Au‖∞ ≤ 1} .

Compute a formula for the projection onto C given as

ΠC(v) := argminu∈Rn

1

2
‖u− v‖22, s.t. u ∈ C.

Hint: Show that the `2-norm of a vector is invariant under a multiplication with an
orthonormal matrix A, meaning that ‖u‖2 = ‖Au‖2.

Solution. We begin proving the hint:

‖Ax‖22 = 〈Ax,Ax〉 = 〈A>Ax, x〉 = 〈x, x〉 = ‖x‖22.

The idea is to rewrite the projection onto the set C in terms of the projection ΠC̃

onto the unit ball of the `∞-norm C̃ := {x ∈ Rn : ‖x‖∞ ≤ 1}. With the substitution

w := Au ⇐⇒ u = A>w

and using the hint we obtain:

ΠC(v) = argmin‖Au‖∞≤1
1

2
‖v − u‖2

= A> argmin‖w‖∞≤1
1

2
‖v − A>w‖2

= A> argmin‖w‖∞≤1
1

2
‖A(v − A>w)‖2

= A> argmin‖w‖∞≤1
1

2
‖Av − AA>w‖2

= A> argmin‖w‖∞≤1
1

2
‖Av − w‖2

= A>ΠC̃(Av).
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Exercise 2 (6 points). Assume J : Rn → R, compute the convex conjugate of
following functions:

• J(u) = 1
q
||u||qq =

∑n
i=1

1
q
|ui|q, q ∈ [1,+∞].

• J(u) =
∑n

i=1 uilogui + δ4n−1(u).

• J(u) =

{
1
2
‖u‖22 , ‖u‖2 ≤ ε

+∞, otherwise

Solution. • Assume q ∈ (1,+∞), J∗(v) = supu〈u, v〉 − J(u). Since it is sepa-
rable, we apply first-order optimality condition elementwisely:

sup
ui

〈ui, vi〉 −
1

q
(|ui|)q ⇒ 0 = vi − |ui|q−1sign(ui)⇒ ui = |vi|1/(q−1)sign(vi)

Substitute ui back to the first equation, we have

J∗(v)i = |vi|q/(q−1) −
1

q
|vi|q/(q−1)

= (1− 1

q
)|vi|q/(q−1)

= (1− 1

q
)|vi|1/(1−

1
q
)

Substituting 1
p
= 1− 1

q
, we get J∗(v) = 1

p
||v||pp.

Now, consider q = 1, we have J∗(v) = supu〈u, v〉 − ‖u‖1 =
∑n

i=1 supui ui(vi −
sign(u)). The result will be

J∗(v) =

{
0, ‖v‖∞ ≤ 1

∞, otherwise.

For q = +∞, J(u) = ‖u‖∞ and J∗(v) = supu〈u, v〉 −maxj |uj|. Compute the
subdifferential we hope to get: v ∈ {x ∈ Rn : ‖x‖ ≤ 1, 〈x, u〉 = ‖u‖∞}.
Therefore, if ‖v‖1 ≤ 1, we can find a u such that v is in the set. We achieve
J∗(v) = 0. Otherwise, we can choose ui = tsign(vi) where t > 0 is a scalar.
We can make J∗(v)→ +∞ as t→ +∞.
The result is then:

J∗(v) =

{
0, ‖v‖1 ≤ 1

∞, otherwise.

• Consider the convex conjugate elementwisely: J∗(v) = supu
∑n

i uivi−uilogui−
δ4n−1(u). Let’s consider the following minimization problem given vi:

min
u

n∑
i

uilogui − uivi

s.t.1u = 1

2



where 1 = [1, . . . , 1] ∈ Rn. It is obvious that this two problems share the same
optimal variable u∗ and the domain of log implies ui > 0. Since the feasible
set is compact and original energy function is continuous, the KKT condition
holds on u∗. Therefore, we have certain λ ∈ R such that

logu∗i + 1− vi + λ = 0, ∀i = 1, . . . , n

which give u∗i = exp{−λ+ vi − 1}. Additionally,
∑n

i=1 u
∗
i = 1. We can get

0 = log(
n∑
i=1

exp{−λ+vi−1}) = log(exp{−λ−1}
n∑
i=1

evi) = (−λ−1)+log(
n∑
i=1

evi)

Now, substitute u∗ back into the convex conjugate and we can get

J(v)∗ =
n∑
i

exp{−λ+ vi − 1}vi − exp{−λ+ vi − 1}(−λ+ vi − 1)

=
n∑
i

−exp{−λ+ vi − 1}(−λ− 1)

= −(−λ− 1) = log(
n∑
i=1

evi)

• Rewrite the convex conjugate as J∗(v) = sup‖u‖2≤ε〈u, v〉−
1
2
‖u‖22. We first try

to find the corresponding u∗.

u∗ = argmin‖u‖2≤ε
1

2
‖u‖22 − 〈u, v〉+

1

2
‖v‖22

= argmin‖u‖2≤ε
1

2
‖u− v‖22

which is a projection problem i.e. project v into a convex set {u : ‖u‖2 ≤ ε}.
Therefore, if ‖v‖2 ≤ ε, u∗ = v. Otherwise, u∗ = ε v

‖v‖ .

J∗(v) =

{
1
2
‖v‖22 , ‖v‖2 ≤ ε

ε ‖v‖22 −
1
2
ε2, otherwise

Exercise 3 (4 points). Show that projection onto a convex set is Lipschitz contin-
uous with constant equals 1, i.e.

||ΠC(u)− ΠC(v)|| ≤ ||u− v||, ∀u, v ∈ E

where C is a convex set.

Solution. Given a point u, recall the property of projection:

〈u− ΠC(u), x− ΠC(u)〉 ≤ 0, ∀x ∈ C.
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Since ΠC(v) is also an element in C, we get:

〈u− ΠC(u),ΠC(v)− ΠC(u)〉 ≤ 0.

As same as above, we can get the ineuqlity for point v:

〈v − ΠC(v),ΠC(u)− ΠC(v)〉 ≤ 0.

Sum above inequalities up, we have:

〈u− ΠC(u) + ΠC(v)− v,ΠC(v)− ΠC(u)〉 ≤ 0

⇒〈ΠC(v)− ΠC(u),ΠC(v)− ΠC(u)〉 ≤ 〈v − u,ΠC(v)− ΠC(u)〉
⇒‖ΠC(v)− ΠC(u)‖2 ≤ ‖v − u‖ ‖ΠC(v)− ΠC(u)‖
⇒‖ΠC(v)− ΠC(u)‖ ≤ ‖v − u‖

Exercise 4 (6 points). Let Ci, 1 ≤ i ≤ n be a family of closed convex sets such
that ⋂

1≤i≤n

Ci 6= ∅.

Show that the problem of finding an element u∗ in the intersection

u∗ ∈
⋂

1≤i≤n

Ci

can be formulated as the following optimization problem:

u∗ ∈ arg min
u∈

⋂
i∈I Ci

∑
j /∈I

1≤j≤n

d2(u,Cj),

where I ⊆ {1, 2, . . . , n} can be arbitrary (including the empty set) and d(z,X) is
the distance of a point z to the closed convex set X defined as

d(z,X) := min
x∈X
‖x− z‖2.

Solution. Since all Ci are closed and convex, d(u,Ci) is well defined. Since d2(u,Cj) ≥
0 and d2(u,Cj) = 0 ⇐⇒ u ∈ Cj,

u ∈
⋂
j /∈I

1≤j≤n

Cj ⇐⇒
∑
j /∈I

1≤j≤n

d2(u,Cj) = 0.

This yields that
0 =

∑
j /∈I

1≤j≤n

d2(u∗, Cj) + δ⋂
i∈I Ci

(u∗)

iff u∗ ∈
⋂

1≤i≤nCi. Since
⋂

1≤i≤nCi non-empty

argminu∈⋂i∈I Ci

∑
j /∈I

1≤j≤n

d2(u,Cj) ⊂
⋂

1≤i≤n

Ci.
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Programming: SUDOKU(Due: 25.11) (12 Points)
Exercise 5 (12 Points). Solve the SUDOKU given in the file exampleSudoku1.mat
(sudoku array in python) with projected gradient descent. The algorithm is already
given, you only need to figure out the correct formulation.
We represent a SUDOKU as a matrix u ∈ {0, 1}9×9×9, where ui,j,k = 1 means
ui,j = k, i.e. we fill number k on position (i, j). Therefore, we have following rules,
where fi,j are the given entries and Bl is a 9× 9 block:

1. Respect given entries: ui,j,k = 1, if fi,j = k

2. One number for each blank spot:
∑

k ui,j,k = 1, ∀i, j

3. Numbers occur in a row once:
∑

j ui,j,k = 1, ∀i, k

4. Numbers occur in a column once:
∑

i ui,j,k = 1, ∀j, k

5. Numbers occur in a block once:
∑

(i,j)∈Bl
ui,j,k = 1, ∀Bl, k

First of all, since the feasible set of u is non-convex, we perform a convex relaxation
on it such that ui,j,k ∈ [0, 1].
Since constraints 2−5 are linear and using the idea from exercise 4, we can vectorize
u and try to find a linear operator A, the opimal u∗ should satisfy Au∗ = 1. The
problem then can be converted into following convex minimization one:

u∗ = argminu
1

2
‖Au− 1‖2 ,

s.t. uijk ∈ [0, 1],

uijk = 1 if fij = k.

Your task here is try to figure out the linear operator A, such that if u is a valid
solution then Au = 1.
Hint: 1. How the optimal u∗ look like?
2. We vectorize u, therefore figure out the dimension of A first.
3. Starting from the third constraint, how A should look like only for that constraint?
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