Lecture: Dr. Tao Wu
Exercises: Zhenzhang Ye
Winter Semester 2019/20

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 5

Room: 02.09.023
Wednesday, 27.11.2019, 12:15-14:00
Submission deadline: Monday, 25.11.2019, 16:15, Room 02.09.023

Convex conjugate

(8+6 Points)
Exercise 1 (4 points). Given a $X \in \mathbb{R}^{m \times n}$, compute the subdifferential of the 1, 2-norm, i.e.

$$
\partial\|X\|_{1,2}=\partial\left(\sum_{i=1}^{m}\left(\sum_{j=1}^{n} X_{i, j}^{2}\right)^{1 / 2}\right) .
$$

Solution. We rewrite the original problem into $J(X)=\sum_{i=1}^{m}\left(\left\|X_{i}\right\|_{2}\right)$, where X_{i} is the i-th row of X. We can apply sum rule on it and get

$$
\partial J(X)=\sum_{i=1}^{m} \partial\left\|X_{i}\right\|_{2}
$$

Now the problem is given a vector x, compute the subdifferential of its ℓ_{2} norm. We consider this problem elementwisely and if $x \neq 0$, we can easily get $\partial\|x\|_{2}=\frac{x}{\|x\|}$. Now consider when $x=0$. Recall the definition of subdifferential:

$$
\partial\|0\|_{2}=\left\{p \in \mathbb{E}:\|y\|_{2} \geq\langle p, y\rangle, \forall y \in \mathbb{E}\right\} .
$$

If $\|p\| \leq 1$, we have $\|y\|_{2} \geq\|p\|_{2}\|y\|_{2} \geq\langle p, y\rangle$. Therefore, such p is in $\partial\|0\|_{2}$. Otherwise, for $\|p\|>1$, choose $y=p$, the inequality doesn't hold any more. Denote $B_{1}(0):=\left\{p \in \mathbb{R}^{n}:\|p\|_{2} \leq 1\right\}$. To summary, we have following equation:

$$
\partial\|x\|_{2}= \begin{cases}\frac{x}{\|x\|_{2}}, & x \neq 0 \\ B_{1}(0), & x=0\end{cases}
$$

Substitute this back into original problem and write into matrix format, we can get

$$
\partial J(X)=\left\{P \in \mathbb{R}^{m \times n}, P_{i} \in \partial\left\|X_{i}\right\|_{2}\right\} .
$$

Exercise 2 (4 Points). Consider following problems of convex conjugate:

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Show that the convex conjugate of the perspective function $g: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$

$$
g(x, t)= \begin{cases}t f(x / t), & \text { if } t>0 \\ \infty, & \text { otherwise }\end{cases}
$$

is given by

$$
g^{*}(y, s)= \begin{cases}0, & \text { if } f^{*}(y) \leq-s \\ \infty, & \text { otherwise }\end{cases}
$$

- Show that the biconjugate of the persepective function g is given by

$$
g^{* *}(x, t)= \begin{cases}t f(x / t), & \text { if } t>0 \\ \sigma_{\operatorname{dom}\left(f^{*}\right)}(x), & \text { if } t=0 \\ \infty, & \text { if } t<0\end{cases}
$$

where $\sigma_{\operatorname{dom}\left(f^{*}\right)}(x)=\sup _{y \in \operatorname{dom}\left(f^{*}\right)}\langle x, y\rangle$ is the support function of $\operatorname{dom}\left(f^{*}\right)$.

Solution.

$$
\begin{aligned}
g^{*}(y, s) & =\sup _{x \in \mathbb{R}^{n}, t \in \mathbb{R}, t>0}\langle x, y\rangle+s t-t f(x / t) \\
& \stackrel{\xi=x / t}{=} \sup _{\xi \in \mathbb{R}^{n}, t \in \mathbb{R}, t>0} t\langle\xi, y\rangle+s t-t f(\xi) \\
& =\sup _{t>0} t \cdot\left(\left[\sup _{\xi}\langle y, \xi\rangle-f(\xi)\right]+s\right) \\
& =\sup _{t>0} t \cdot\left(f^{*}(y)+s\right)= \begin{cases}0 & \text { if } f^{*}(y)+s \leq 0 \\
\infty & \text { otherwise } .\end{cases}
\end{aligned}
$$

$$
g^{* *}(x, t)=\sup _{f^{*}(y) \leq-s}\langle y, x\rangle+s t
$$

For $t<0$ the supremum is unbounded, since for $s \rightarrow-\infty$ we have st $\rightarrow \infty$.
For $t=0$ we have

$$
g^{* *}(x, t)=\sup _{f^{*}(y) \leq-s}\langle y, x\rangle=\sup _{y \in \operatorname{dom}\left(f^{*}\right)}\langle y, x\rangle=\sigma_{\operatorname{dom}\left(f^{*}\right)}(x)
$$

Finally let $t>0$. The supremum in s is achieved at $\hat{s}=-f^{*}(y)$ and we have

$$
\begin{aligned}
g^{* *}(x, t) & =\sup _{f^{*}(y) \leq-s}\langle y, x\rangle+s t=\sup _{y}\langle y, x\rangle-t f^{*}(y) \\
& =t \sup _{y}\langle y, x / t\rangle-f^{*}(y)=t f^{* *}(x / t)=t f(x / t) .
\end{aligned}
$$

The last equality holds since f is convex (and is everywhere finite hence continuous and proper) we have $f^{* *}=f$.

Exercise 3 (6 Points). Let $A \in \mathbb{R}^{m \times n}$ be a linear operator and $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ a convex function. Then $A f: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ defined as

$$
(A f)(u):= \begin{cases}\inf _{v \in \mathbb{R}^{n}, A v=u} f(v) & \text { if } \exists v \in \mathbb{R}^{n} \text { s.t. } A v=u \\ \infty & \text { otherwise }\end{cases}
$$

is called the image of f under A. Here, we assume $A f$ is always proper.

1. Show that the convex conjugate $(A f)^{*}$ of $A f$ is given as $f^{*} \circ A^{\top}$ where $\left(f^{*} \circ A^{\top}\right)(v):=f^{*}\left(A^{\top} v\right)$.
2. Name the properties that we require for $A^{\top} f^{*}=(f \circ A)^{*}$ to hold. What theorem from the lecture applies here?
3. Give an example of a closed, convex and non-empty set C and a linear operator A s.t. $A C:=\{A x: x \in C\}$ is not closed.
4. Let f be closed, (convex) and proper. Argue that $A f$ does not need to be closed.

Solution. 1. We find

$$
\begin{aligned}
(A f)^{*}(u) & =\sup _{v \in \mathbb{R}^{n}}\langle u, v\rangle-\inf _{w \in \mathbb{R}^{n}, A w=v} f(w) \\
& =\sup _{v \in \mathbb{R}^{n}}\langle u, v\rangle-f(w) \\
& =\sup _{w \in \mathbb{R}^{n}}\langle u, A w=v \\
& =\sup _{w \in \mathbb{R}^{n}}\left\langle A^{\top} u, w\right\rangle-f(w) \\
& =f^{*}\left(A^{\top} u\right)
\end{aligned}
$$

2. If $A^{\top} f^{*}$ is proper, convex and lsc and $m=n$, it is equal to its biconjugate and using the result from the previous part we find:

$$
A^{\top} f^{*}=\left(A^{\top} f^{*}\right)^{* *}=(f \circ A)^{*} .
$$

3. Choose $C:=\operatorname{epi}(\exp) \subseteq \mathbb{R}^{2}$. C is closed, convex and non-empty, since it is the epigraph of the continuous, convex and proper function f. Let $A:=(0,1)$ then $A C=(0, \infty)$ which is not closed.
4. Let A, C be defined as in the previous part. Define $f:=\delta_{C}$. Then f is closed, proper and convex. We have

$$
\begin{aligned}
A f(u) & =\inf _{v \in \mathbb{R}^{2}, A v=u} f(v) \\
& =\inf _{v \in \mathbb{R}^{2}, v_{2}=u} \delta_{C}(v) \\
& = \begin{cases}0 & \text { if } u>0 \\
\infty & \text { otherwise }\end{cases} \\
& =\delta_{(0, \infty)}(u)
\end{aligned}
$$

We obtain

$$
\operatorname{epi}(A f)=(0, \infty) \times[0, \infty)
$$

which is not closed. Therefore $A f$ is not closed.

