
Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Computer Vision Group
Exercises: Zhenzhang Ye Institut für Informatik
Winter Semester 2019/20 Technische Universität München

Weekly Exercises 6
Room: 02.09.023

Wednesday, 04.12.2019, 12:15-14:00
Submission deadline: Monday, 02.12.2019, 16:15, Room 02.09.023

Proximal operator (10+6 Points)
Exercise 1 (4 Points). Assume function J : Rn → R is convex and subdifferentiable
on its domain. Show that u∗ minimizes J if and only if u∗ = proxJ(u∗).

Solution. If u∗ minimizes J , we have J(u) ≥ J(u∗) for any u ∈ domJ. Therefore,

J(u) +
1

2
‖u− u∗‖22 ≥ J(u∗) = J(u∗) +

1

2
||u∗ − u∗||22

for any u, which means u∗ = proxJ(u∗).
Conversely, as J is a convex function, a point u = proxJ(u∗) if and only if

0 ∈ ∂J(u) + (u− u∗)

Replace u with u∗, we can get the optimality condition. Since J is convex, we know
that u∗ is the minimizer.

Exercise 2 (4 Points). Prove following properties of proximal operator:

• If J(u) = αf(u) + b, with α > 0, then proxλJ(v) = proxαλf (v).

• If J(u) = f(Qu), whereQ is an orthogonal matrix, then proxλJ(v) = Q>proxλf (Qv)

Solution. •
proxλJ(v) = argminu J(u) +

1

2λ
||u− v||2

= argminu αf(u) + b+
1

2λ
||u− v||2

= argminu α(f(u) +
1

2λα
||u− v||2)

= argminu f(u) +
1

2λα
||u− v||2

= proxαλf (v)
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•
proxλJ(v) = argminu J(u) +

1

2λ
||u− v||2

= argminu f(Qu) +
1

2λ
||u− v||2

= argminu f(Qu) +
1

2λ
||Qu−Qv||2

t=Qu
= Q> argmint f(t) +

1

2λ
||t−Qv||2

= Q>proxλf (Qv)

Exercise 3 (4 Points). Show that the `1-norm proximal operator of v ∈ Rn is given
as

proxλ‖·‖1(v) = u ∈ Rn, ui :=


vi + λ if vi < −λ
0 if vi ∈ [−λ, λ]
vi − λ if vi > λ.

Solution. We begin reformulating the optimality condition

0 ∈ ∂
(

1

2λ
(ui − vi)2 + |ui|

)
of the optimal ui

0 =
1

λ
(ui − vi) + p, p ∈ ∂|ui| :=


−1 if ui < 0

[−1, 1] if ui = 0

1 if ui > 0

vi ∈ ui +


−λ if ui < 0

[−λ, λ] if ui = 0

λ if ui > 0.

Recall that we are looking for a ui that satisfies the condition above given a fixed
vi. We distinguish the following cases:

1. Assume vi ∈ [−λ, λ]. Choosing ui := 0 satisfies the condition above.

2. Assume vi > λ. Choosing ui := vi − λ again satisfies the condition.

3. Assume vi < −λ. Choosing ui := vi + λ is the right choice.

Exercise 4 (4 points). Compute the proximal operator of the 1, 2-norm, i.e.

proxτ ||X||1,2 ,

where X ∈ Rm×n is a matrix .
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Solution. Firstly recall the subdifferential of 1, 2-norm computed in previous sheet:

∂ ‖X‖1,2 = {P ∈ Rm×n : Pi ∈ ∂||Xi||2}

where Pi and Xi are the i-th row of coressponding matrix and

∂ ‖Xi‖ =

{
Xi

‖Xi‖2
, Xi 6= 0

{Pi ∈ Rn : ‖Pi‖2 ≤ 1}, Xi = 0

Now we use the definition of proximity operator:

proxτ ||X||1,2(Y ) = argminX ||X||1,2 +
1

2τ
||X − Y ||22

which gives us the following by using the optimality condition:

0 ∈ ∂||X||1,2 +
1

τ
(X − Y ).

Since each row is independently, we can solve it for each row and get:

0 ∈ ∂||Xi||2 +
1

τ
(Xi − Yi).

If ‖Xi‖ 6= 0, we have Yi = τ Xi

‖Xi‖ + Xi. If we denote Xi = tei where ei := Xi

‖Xi‖ ,
previous equation becomes Yi = τei + tei. Hence, ‖Yi‖2 = τ + t, which implies
‖Yi‖ > τ .
If ‖Xi‖ = 0, we have Yi ∈ {Pi ∈ Rn : ‖Pi‖2 ≤ τ}.
To summary we have:

proxτ ||X||1,2(Y ) =

{
X ∈ Rm×n : Xi =

{
0, if ‖Yi‖ ≤ τ

(‖Yi‖2 − τ)
Yi
‖Yi‖ , if ‖Yi‖ > τ

}
.
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Multinomial Logistic Regression (Due:16.12) (16
Points)
Exercise 5 (16 Points). In this exercise you are asked to train a linear model for
a multiclass classification task with Logistic regression. The idea is as follows: You
are given a set of training samples I = {1, . . . , N} that are represented by their
feature vectors xi ∈ Rd, for i ∈ I. Each training sample i is associated with a class
label yi ∈ {1, . . . , C}. The aim is to estimate a linear classifier parameterized by
W ∗ ∈ Rd×C , b∗ ∈ RC so that yi = argmax1≤j≤C x

>
i W

∗
j + b

∗
j for most training samples

i. Once you have obtained this “optimal” classifier the hope is, that you are able to
classify new unseen and unlabeled samples x ∈ Rd. In machine learning this is called
generalization. For this task you may query your trained model via the classifier
rule

y = argmax1≤j≤C x
>W ∗

j + b∗j (1)

and y probably is the true class label of x if your model generalizes well. In order
to estimate the model we solve an optimization problem of the form

min
W∈Rd×C ,b∈RC

1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖22 +

λ2
2
‖b‖22, (2)

where

`(W, b, xi, yi) = − log

(
exp(〈Wyi , xi〉+ byi)∑C
j=1 exp(〈Wj, xi〉+ bj)

)
(3)

is called the softmax loss. Note that the above problem is smooth and strongly
convex and can be solved with gradient descent. In practice however, it may happen,
that some features (i.e. components of the vector xi) do not contain any information
about the true class labels, i.e. components that are just noise. In order to filter
out the useless features we modify the norm on W . So we have

min
W∈Rd×C ,b∈RC

1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖1,2 +

λ2
2
‖b‖22 (4)

You are asked to do the following:

• Download the toy data template from the homepage

• Implement a proximal gradient descent algorithm to optimize above objective
function (4) (Avoid for-loops)

• Make sure that your objective monotonically decreases. Plot the objective
values. Stop your code if the difference of two successive iterates is less than
10−12.
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• In order to ensure that your derivative is computed correctly you may first
optimize the fully differentiable model (2) with MATLABs fminunc with the
options ′GradObj ′, ′On ′ and ′DerivativeCheck ′, ′On ′. (Python: check out e.g.
scipy.optimize.grad_check. This step is optional.)

• Iteratively compute the test error in percent, i.e. how many test samples are
not classified correctly via the rule (1).

• Play around with different parameter settings for λ1, λ2. Can you identify the
useless features? Explain why the model generalizes better to unseen test data
if you use 1, 2-norm on W ∗ (answer by comment at the end of your code).

• You may apply your code to the MNIST dataset http://yann.lecun.com/
exdb/mnist/ and see that your are now able to classify handwritten digits
(Optional).

Solution. We apply the proximal gradient descent scheme to our objective (4). To
this end we need compute the partial derivatives ∂F (W,b)

∂Wlk
and ∂F (W,b)

∂bk
of the differen-

tiable part of the objective

F (W, b) =
1

N

N∑
i=1

`(W, b, xi, yi) +
λ1
2
‖W‖22 +

λ1
2
‖b‖22.

First we observe, that

∂F (W, b)

∂Wlk

=
1

N

N∑
i=1

∂`(W, b, xi, yi)

∂Wlk

+ λ1Wlk

and
∂F (W, b)

∂bk
=

1

N

N∑
i=1

∂`(W, b, xi, yi)

∂bk
+ λ1bk.

For some class 1 ≤ k ≤ C define

hk(W, b) =
exp(〈Wyi , xi〉+ byi)∑C
j=1 exp(〈Wj, xi〉+ bj)

and

1{yi = k} =

{
1 if yi = k

0 otherwise.

Via the one-dimensional chain rule and the quotient rule the partial derivatives of
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the individual loss terms are given as:

∂`(W, b, xi, yi)

∂Wlk

=− 1

hyi(W, b)
·
1{yi = k} · exp(〈Wyi , xi〉+ byi) · xil ·

(∑C
j=1 exp(〈Wj, xi〉+ bj)

)
(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

+
1

hyi(W, b)
· exp(〈Wyi , xi〉+ byi) · exp(〈Wk, xi〉+ bk) · xil(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

=− 1

hyi(W, b)
· 1{yi = k} · xil · hyi(W, b) +

1

hyi(W, b)
· hyi(W, b) · hk(W, b) · xil

=(hk(W, b)− 1{yi = k}) · xil.

Similarly we obtain for the derivative wrt. bk:

∂`(W, b, xi, yi)

∂bk

=− 1

hyi(W, b)
·
1{yi = k} · exp(〈Wyi , xi〉+ byi) ·

(∑C
j=1 exp(〈Wj, xi〉+ bj)

)
(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

+
1

hyi(W, b)
· exp(〈Wyi , xi〉+ byi) · exp(〈Wk, xi〉+ bk)(∑C

j=1 exp(〈Wj, xi〉+ bj)
)2

=hk(W, b)− 1{yi = k}.
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