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Exact Line Search (14+6 Points)

Exercise 1 (6 Points). Let @ € R™™ be a positive definite symmetric matrix.
Prove the following inequality for any vector x € R"
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where A, and \; are, respectively, the largest and smallest eigenvalues of Q).

Solution. Since () € R™*" is symmetric positive definite, we can write it as Q) =
UAUT, where A is a n x n diagonal matrix containing the eigenvalues of Q.
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where y = U2 € R". (y can attain any value in R” since U is full rank.)

We used the fact that (z,UAUTz) = (UTz, AU z) = (y,Ay) and |jz|* =
(@, UUTz) = (UT2,UTx) = [ly|I*,

Now let & =42/ ||ly|”, then we have
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Since & > 0 and Y ;& = 1 we have a ratio of two functions involving convex
combinations. B B
Let f(z) = 1/z, and X := ). &N\, Then ¢(&) = f(A). Furthermore, take the

affine function . )
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Since f is convex (on R™) we have that f(\) < g(\),VA > 0. Then
() = Zfifo\i) < Zfi!]()\i) = Q(Z &xi) = g(\)

Then we have
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Exercise 2 (6 Points). Let ) € R™" be symmetric positive definite, and b € R".
As in the previous exercise, denote the eigenvalues of Q as 0 < A\ < Ay < ... < \,.
Consider the quadratic function f: R" - R, z — %xTQx — b"z and show gradient
descent with exact line search has the following convergence property:
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where x* € R" denotes the global minimizer of f.
Hint: use the inequality from exercise 1.
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Solution. From the lecture we know that the line search procedure has the solution

VM|
" = argmin, f(z" — 7V f(2*)) = H
L)@

Furthermore, note that Vf(2*) = Qz* — b = Q(2* — x*). We have the following
equalities:
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Hence, using exercise 1, we arrive at the estimate from the lecture
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Image Denoising (Due Date: 13.01) (10 Points)

Given a noisy input image, we want to remove the noises by solving following mini-
mization problem:

1
argmin,, = Ju — fI + pH.(Ku).

where f € RY is the input image with IV pixels, p is a scalar weighting the smooth
regularizor, H. is the Huber function defined as before and K is the gradient oper-
ator.

Your task is using gradient descent with line search to solve it.

For detailed line search, you can refer to Algorithm 3.5 and 3.6 (Page 79) in Nu-
merical Optimization
http://www.apmath.spbu.ru/cnsa/pdf/monograf/Numerical_Optimization2006.pdf.
For zoom function, you can directly use bisection.



