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Majorize Minimization (12+6 Points)
Exercise 1 (4 Points). Given following convex minimization problem:

min
x∈R

f(x) + g(x), (1)

where f(x) is non-differentiable and g(x) is L-Lipschitz differentiable, we can apply
proximal gradient to solve it.
State that proximal gradient is an example of majorize minimization.
Hint: Write down the explicit updating step of proximal gradient. Then figure out
the majorant.

Solution. Firstly, we write down the proximal gradient step at k-th iteration:

xk+1/2 = xk − τ∇g(xk)

xk+1 = argminx
1

2τ

∥∥x− xk+1/2
∥∥2 + f(x)

(2)

where τ is the step size in (0, 1
L
]. We combine above two equations into one:

xk+1 = argminx
1

2τ

∥∥x− (xk − τ∇g(xk))
∥∥2 + f(x)

= argminx
1

2τ

∥∥x− xk∥∥2 + 〈∇g(xk), x− xk〉+ f(x)
(3)

We want to create a majorant for original function. We are allowed to add arbitrary
constant in the last energy function to make it satisfy the definition of majorant and
not change argmin. Therefore, we can construct following majorant function:

qτ (x, y) =
1

2τ
‖x− y‖2 + 〈∇g(y), x− y〉+ g(y) + f(x) (4)

The first condition is easily shown by replacing y with x. The second condition is
satisfied due to the L-lipschitz differentiable and τ in (0, 1

L
].

Now consider following theorem:
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Theorem. Suppose J(u) is an even, differentiable function on R such that thte
ratio J ′(u)/u is decreasing on (0,∞). Then the quadratic:

Ĵ(v;u) =
J ′(u)

2u
(v2 − u2) + J(u)

is a majorant of J(·) at the point u.

Exercise 2 (4 Points). Prove above theory.
Hint: 1. Since J is an even function, prove the case 0 ≤ v ≤ u and then generate to
other cases.
2. You might use this equation: J(u)− J(v) =

∫ u
v
J ′(z)dz.

Solution. It is obvious that Ĵ(u;u) = J(u), we need to prove the other condition
Ĵ(v;u) ≥ J(v),∀v. Considering the case 0 ≤ v ≤ u, we have:

J(u)− J(v) =
∫ u

v

J ′(z)dz

=

∫ u

v

J ′(z)

z
zdz

≥ J ′(u)

u

∫ u

v

zdz

=
J ′(u)

u

1

2
(u2 − v2)

= J(u)− Ĵ(v;u),

where the inequality comes from the assumption that J ′(u)/u is decreasing. It
follows that Ĵ(v;u) ≥ J(v), ∀v. For the case that 0 ≤ u ≤ v, we use the same idea
starting with J(v) − J(u). Because J and Ĵ are both even, all othere cases reduce
to these two cases.

Exercise 3 (4 Points). The Huber function hε : R→ R is given as

hε(u) =

{
x2

2ε
if |x| ≤ ε,

|x| − ε
2

otherwise.

Given the energy function:

argminu∈Rn

1

2
‖u− f‖2 +Hε(Ku), (5)

where f ∈ Rn is a known variable, the Huber function Hε : Rm → R defined as
Hε(x) =

∑m
i=1 hε(xi) and K ∈ Rm×n is a linear operator.

1. State that we can apply above theorem for the Huber function part i.e. Hε(Ku)
(consider the reparameterization).

2. Compute the majorant of the Huber function part using above theorem.
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Solution. 1. Because Huber function is seperable. We can decouple it element-
wisely if we set Ku = v. Obviously, the Huber function satisfies the assump-
tion in above theorem. While sum will not change the greater relation, the
sum of majorant of each function will be the majorant of the sum of functions.

2. We first compute the gradient of hε(yi):

hε(yi) =


−1, yi ≤ −ε
y
ε
, yi ∈ (−ε, ε)

1, yi ≥ ε

(6)

Plugging it into the formula, we get:

gε(xi, yi) =


− 1

2yi
x2i −

yi
2
− ε

2
, yi ≤ −ε

1
2ε
x2, yi ∈ (−ε, ε)

1
2yi
x2i +

yi
2
− ε

2
, yi ≥ ε

(7)

In total, we have the majorant for Hε(x):

m∑
i=1

gε(xi, yi)

Exercise 4 (6 points). 1. Show that the Huber penalty can be expressed as the
infimal convolution of the functions f : R→ R with f(x) := x2

2ε
and g : R→ R

with g(x) := |x|:
hε(x) = (f � g)(x).

2. Compute the convex conjugate of the function Hε : RN → R.

Solution. 1. For the infimal convolution we have that(
(·)2

2ε
� | · |

)
(u) = inf

v∈Rn

1

2ε
(u− v)2 + |v|

The minimizer for that is attained at

v∗ =


u+ ε if u < −ε
0 if u ∈ [−ε, ε]
u− ε if u > ε.

Plugging this in we obtain for the infimum:

(
(·)2

2ε
� | · |

)
(u) =


1
2ε
ε2 + |u+ ε| = ε

2
− u− ε = − ε

2
− u if u < −ε

1
2ε
u2 if u ∈ [−ε, ε]

1
2ε
ε2 + u− ε = − ε

2
+ u if u > ε.

which is obviously what we were supposed to show.
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2. Since the elements of the sum are independent the sum decouples. That is one
can compute the conjugate of the Huber terms seperately. By some computa-
tion from the result above, we obtain:

h∗ε(yi) =
ε

2
y2i + ι|·|≤1(yi).

The overall conjugate is then given as:

H∗ε (y) =
ε

2
‖y‖22 + ι|·|∞≤1(y).

Image Denoising (Due Date: 27.01) (10 Points)
Given a noisy input image, we want to remove the noises by solving following mini-
mization problem:

argminu∈RN

1

2
‖u− f‖2 + ρHε(Ku).

where f ∈ RN is the input image with N pixels, ρ is a scalar weighting the smooth
regularizor, Hε is the Huber function defined as before and K is the gradient oper-
ator.
Your tasks are: (1) use the majorize minimization with majorant in exercise 3 to
solve above problem.
(2) check the optimality condition by duality gap with the convex conjugate in
exerice 4.
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