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Breakthroughs in machine learning are rapidly changing science
and society, yet our fundamental understanding of this technol-
ogy has lagged far behind. Indeed, one of the central tenets of the
field, the bias–variance trade-off, appears to be at odds with the
observed behavior of methods used in modern machine-learning
practice. The bias–variance trade-off implies that a model should
balance underfitting and overfitting: Rich enough to express
underlying structure in data and simple enough to avoid fit-
ting spurious patterns. However, in modern practice, very rich
models such as neural networks are trained to exactly fit (i.e.,
interpolate) the data. Classically, such models would be consid-
ered overfitted, and yet they often obtain high accuracy on test
data. This apparent contradiction has raised questions about the
mathematical foundations of machine learning and their rele-
vance to practitioners. In this paper, we reconcile the classical
understanding and the modern practice within a unified perfor-
mance curve. This “double-descent” curve subsumes the textbook
U-shaped bias–variance trade-off curve by showing how increas-
ing model capacity beyond the point of interpolation results in
improved performance. We provide evidence for the existence
and ubiquity of double descent for a wide spectrum of mod-
els and datasets, and we posit a mechanism for its emergence.
This connection between the performance and the structure of
machine-learning models delineates the limits of classical analy-
ses and has implications for both the theory and the practice of
machine learning.
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Machine learning has become key to important applica-
tions in science, technology, and commerce. The focus of

machine learning is on the problem of prediction: Given a sam-
ple of training examples (x1, y1), . . . , (xn , yn) from Rd ×R, we
learn a predictor hn : Rd→R that is used to predict the label y
of a new point x , unseen in training.

The predictor hn is commonly chosen from some function class
H, such as neural networks with a certain architecture, using
empirical risk minimization (ERM) and its variants. In ERM,
the predictor is taken to be a function h ∈H that minimizes
the empirical (or training) risk 1

n

∑n
i=1 `(h(xi), yi), where ` is

a loss function, such as the squared loss `(y ′, y)= (y ′− y)2 for
regression or 0–1 loss `(y ′, y)=1{y′ 6=y} for classification.

The goal of machine learning is to find hn that performs well
on new data, unseen in training. To study performance on new
data (known as generalization), we typically assume the training
examples are sampled randomly from a probability distribution
P over Rd ×R and evaluate hn on a new test example (x , y)
drawn independently from P . The challenge stems from the mis-
match between the goals of minimizing the empirical risk (the
explicit goal of ERM algorithms, optimization) and minimizing
the true (or test) risk E(x ,y)∼P [`(h(x ), y)] (the goal of machine
learning).

Conventional wisdom in machine learning suggests controlling
the capacity of the function class H based on the bias–variance
trade-off by balancing underfitting and overfitting (cf. refs. 1 and
2): 1) IfH is too small, all predictors inHmay underfit the train-

ing data (i.e., have large empirical risk) and hence predict poorly
on new data. 2) If H is too large, the empirical risk minimizer
may overfit spurious patterns in the training data, resulting in
poor accuracy on new examples (small empirical risk but large
true risk).

The classical thinking is concerned with finding the “sweet
spot” between underfitting and overfitting. The control of the
function class capacity may be explicit, via the choice of H (e.g.,
picking the neural network architecture), or it may be implicit,
using regularization (e.g., early stopping). When a suitable bal-
ance is achieved, the performance of hn on the training data
is said to generalize to the population P . This is summarized
in the classical U-shaped risk curve shown in Fig. 1A that has
been widely used to guide model selection and is even thought
to describe aspects of human decision making (3). The textbook
corollary of this curve is that “a model with zero training error is
overfit to the training data and will typically generalize poorly”
(ref. 2, p. 221), a view still widely accepted.

However, practitioners routinely use modern machine-
learning methods, such as large neural networks and other non-
linear predictors that have very low or zero training risk. Despite
the high function class capacity and near-perfect fit to training
data, these predictors often give very accurate predictions on new
data. Indeed, this behavior has guided a best practice in deep
learning for choosing neural network architectures, specifically
that the network should be large enough to permit effortless
zero-loss training (called interpolation) of the training data
(4). Moreover, in direct challenge to the bias–variance trade-
off philosophy, recent empirical evidence indicates that neural
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Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd→C of the form

h(x )=
N∑

k=1

akφ(x ; vk ) where φ(x ; v):=e
√
−1〈vk ,x〉,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N →∞, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H∞. While it is possible to directly use
H∞ [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd ×R, we find the predictor hn,N ∈
HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

∑n
i=1(h(xi)− yi)

2 over all functions h ∈HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm ‖h‖H∞ , which is generally
difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.
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In Fig. 2, we show the test risk of the predictors learned using
HN on a subset of the popular dataset of handwritten digits
called MNIST. Fig. 2 also shows the `2 norm of the function
coefficients, as well as the training risk. We see that for small
values of N , the test risk shows the classical U-shaped curve con-
sistent with the bias–variance trade-off, with a peak occurring
at the interpolation threshold N =n . Some statistical analyses
of RFF suggest choosing N ∝

√
n log n to obtain good test risk

guarantees (15).
The interpolation regime connected with modern practice is

shown to the right of the interpolation threshold, with N ≥n .
The model class that achieves interpolation with fewest param-
eters (N =n random features) yields the least accurate predic-
tor. (In fact, it has no predictive ability for classification.) But
as the number of features increases beyond n , the accuracy
improves dramatically, exceeding that of the predictor corre-
sponding to the bottom of the U-shaped curve. The plot also
shows that the predictor hn,∞ obtained from H∞ (the ker-
nel machine) outperforms the predictors from HN for any
finite N .

What structural mechanisms account for the double-descent
shape? When the number of features is much smaller than the
sample size, N �n , classical statistical arguments imply that the
training risk is close to the test risk. Thus, for small N , adding
more features yields improvements in both the training and the
test risks. However, as the number of features approaches n
(the interpolation threshold), features not present or only weakly
present in the data are forced to fit the training data nearly
perfectly. This results in classical overfitting as predicted by the
bias–variance trade-off and prominently manifested at the peak
of the curve, where the fit becomes exact.

To the right of the interpolation threshold, all function classes
are rich enough to achieve zero training risk. For the classesHN

that we consider, there is no guarantee that the most regular,
smallest norm predictor consistent with training data (namely
hn,∞, which is inH∞) is contained in the classHN for any finite
N . But increasing N allows us to construct progressively better

approximations to that smallest norm function. Thus, we expect
to have learned predictors with largest norm at the interpolation
threshold and for the norm of hn,N to decrease monotonically
as N increases, thus explaining the second descent segment of
the curve. This is what we observe in Fig. 2, and indeed hn,∞
has better accuracy than all hn,N for any finite N . Favoring small
norm interpolating predictors turns out to be a powerful induc-
tive bias on MNIST and other real and synthetic datasets (6). For
noiseless data, we make this claim mathematically precise in SI
Appendix.

Additional empirical evidence for the same double-descent
behavior using other datasets is presented in SI Appendix. For
instance, we demonstrate double descent for rectified linear unit
(ReLU) random feature models, a class of ReLU neural net-
works with a setting similar to that of RFF. We also describe
a simple synthetic model, which can be regarded as a 1D version
of the RFF model, where we observe the same double-descent
behavior.

Neural Networks and Backpropagation. In general multilayer neu-
ral networks (beyond RFF or ReLU random feature models),
a learning algorithm will tune all of the weights to fit the train-
ing data, typically using versions of stochastic gradient descent
(SGD), with backpropagation to compute partial derivatives.
This flexibility increases the representational power of neural
networks, but also makes ERM generally more difficult to imple-
ment. Nevertheless, as shown in Fig. 3, we observe that increasing
the number of parameters in fully connected 2-layer neural net-
works leads to a risk curve qualitatively similar to that observed
with RFF models. That the test risk improves beyond the inter-
polation threshold is compatible with the conjectured “small
norm” inductive biases of the common training algorithms for
neural networks (16, 17). We note that this transition from
under- to overparameterized regimes for neural networks was
also previously observed by refs. 18–21. In particular, ref. 21
draws a connection to the physical phenomenon of “jamming”
in particle systems.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient `2 norms (log scale), and training risks of the RFF
model predictors hn,N learned on a subset of MNIST (n = 104, 10 classes). The interpolation threshold is achieved at N = 104.
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Fig. 3. Double-descent risk curve for a fully connected neural network
on MNIST. Shown are training and test risks of a network with a single
layer of H hidden units, learned on a subset of MNIST (n = 4 · 103, d = 784,
K = 10 classes). The number of parameters is (d + 1) ·H + (H + 1) ·K. The
interpolation threshold (black dashed line) is observed at n ·K.

The computational complexity of ERM with neural networks
makes the double-descent risk curve difficult to observe. Indeed,
in the classical underparameterized regime (N �n), the non-
convexity of the ERM optimization problem causes the behavior
of local search-based heuristics, like SGD, to be highly sensi-
tive to their initialization. Thus, if only suboptimal solutions are
found for the ERM optimization problems, increasing the size
of a neural network architecture may not always lead to a corre-
sponding decrease in the training risk. This suboptimal behavior
can lead to high variability in both the training and test risks that
masks the double-descent curve.

It is common to use neural networks with an extremely large
number of parameters (22). But to achieve interpolation for a
single output (regression or 2-class classification) one expects to
need at least as many parameters as there are data points. More-
over, if the prediction problem has more than one output (as in
multiclass classification), then the number of parameters needed
should be multiplied by the number of outputs. This is indeed
the case empirically for neural networks shown in Fig. 3. Thus,
for instance, datasets as large as ImageNet (23), which has ∼106
examples and ∼103 classes, may require networks with ∼109
parameters to achieve interpolation; this is larger than many
neural network models for ImageNet (22). In such cases, the clas-
sical regime of the U-shaped risk curve is more appropriate to
understand generalization. For smaller datasets, these large neu-
ral networks would be firmly in the overparameterized regime,
and simply training to obtain zero training risk often results in
good test performance (5).

Additional results with neural networks are given in SI
Appendix.

Decision Trees and Ensemble Methods
Does the double-descent risk curve manifest with other pre-
diction methods besides neural networks? We give empirical
evidence that the families of functions explored by boosting with
decision trees and random forests also show similar generaliza-
tion behavior to that of neural nets, both before and after the
interpolation threshold.

AdaBoost and random forests have recently been investigated
in the interpolation regime by ref. 24 for classification. In par-

ticular, they give empirical evidence that, when AdaBoost and
random forests are used with maximally large (interpolating)
decision trees, the flexibility of the fitting methods yields interpo-
lating predictors that are more robust to noise in the training data
than the predictors produced by rigid, noninterpolating meth-
ods (e.g., AdaBoost or random forests with shallow trees). This
in turn is said to yield better generalization. The averaging of
the (near) interpolating trees ensures that the resulting function
is substantially smoother than any individual tree, which aligns
with an inductive bias that is compatible with many real-world
problems.

We can understand these flexible fitting methods in the con-
text of the double-descent risk curve. Observe that the size of a
decision tree (controlled by the number of leaves) is a natural
way to parameterize the function class capacity: Trees with only
2 leaves correspond to 2-piecewise constant functions with an
axis-aligned boundary, while trees with n leaves can interpolate n
training examples. It is a classical observation that the U-shaped
bias–variance trade-off curve manifests in many problems when
the class capacity is considered this way (2). (The interpolation
threshold may be reached with fewer than n leaves in many cases,
but n is clearly an upper bound.) To further enlarge the function
class, we consider ensembles (averages) of several interpolating
trees.

∗
So, beyond the interpolation threshold, we use the num-

ber of such trees to index the class capacity. When we view the
risk curve as a function of class capacity defined in this hybrid
fashion, we see the double-descent curve appear just as with
neural networks (Fig. 4 and SI Appendix). We observe a sim-
ilar phenomenon using L2 boosting (26, 27), another popular
ensemble method; the results are reported in SI Appendix.

Concluding Thoughts
The double-descent risk curve introduced in this paper recon-
ciles the U-shaped curve predicted by the bias–variance trade-off
and the observed behavior of rich models used in modern
machine-learning practice. The posited mechanism that under-
lies its emergence is based on common inductive biases and
hence can explain its appearance (and, we argue, ubiquity) in
machine-learning applications.

We conclude with some final remarks.

Historical Absence. The double-descent behavior may have been
historically overlooked on account of several cultural and prac-
tical barriers. Observing the double-descent curve requires a
parametric family of spaces with functions of arbitrary complex-
ity. The linear settings studied extensively in classical statistics
usually assume a small, fixed set of features and hence fixed
fitting capacity. Richer families of function classes are typically
used in the context of nonparametric statistics, where smoothing
and regularization are almost always used (28). Regularization,
of all forms, can both prevent interpolation and change the effec-
tive capacity of the function class, thus attenuating or masking
the interpolation peak.

The RFF model is a popular and flexible parametric family.
However, these models were originally proposed as a computa-
tionally favorable alternative to kernel machines. This compu-
tational advantage over traditional kernel methods holds only
for N �n , and hence models at or beyond the interpolation
threshold are typically not considered.

The situation with general multilayer neural networks is
slightly different and more involved. Due to the nonconvex-
ity of the ERM optimization problem, solutions in the classical
underparameterized regime are highly sensitive to initialization.

*These trees are trained in the way proposed in random forest except without bootstrap
resampling. This is similar to the PERT method of ref. 25.
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Fig. 4. Double-descent risk curve for random forests on MNIST. The double-
descent risk curve is observed for random forests with increasing model
complexity trained on a subset of MNIST (n = 104, 10 classes). Its complex-
ity is controlled by the number of trees Ntree and the maximum number of
leaves allowed for each tree Nmax

leaf .

Moreover, as we have seen, the peak at the interpolation thresh-
old is observed within a narrow range of parameters. Sampling of
the parameter space that misses that range may lead to the mis-
leading impression that increasing the size of the network simply
improves performance. Finally, in practice, training of neural
networks is typically stopped as soon as (an estimate of) the test
risk fails to improve. This early stopping has a strong regularizing
effect that, as discussed above, makes it difficult to observe the
interpolation peak.

Inductive Bias. In this paper, we have dealt with several types
of methods for choosing interpolating solutions. For random
Fourier features, solutions are constructed explicitly by mini-
mum norm linear regression in the feature space. As the number
of features tends to infinity they approach the minimum func-
tional norm solution in the reproducing kernel Hilbert space,
a solution which maximizes functional smoothness subject to
the interpolation constraints. For neural networks, the induc-
tive bias owes to the specific training procedure used, which

is typically SGD. When all but the final layer of the network
are fixed (as in RFF models), SGD initialized at zero also con-
verges to the minimum norm solution. While the behavior of
SGD for more general neural networks is not fully understood,
there is significant empirical and some theoretical evidence (e.g.,
ref. 16) that a similar minimum norm inductive bias is present.
Yet another type of inductive bias related to averaging is used
in random forests. Averaging potentially nonsmooth interpolat-
ing trees leads to an interpolating solution with a higher degree
of smoothness; this averaged solution performs better than any
individual interpolating tree.

Remarkably, for kernel machines all 3 methods lead to the
same minimum norm solution. Indeed, the minimum norm inter-
polating classifier, hn,∞, can be obtained directly by explicit norm
minimization (solving an explicit system of linear equations),
through SGD, or by averaging trajectories of Gaussian processes
[computing the posterior mean (29)].

Optimization and Practical Considerations. In our experiments,
appropriately chosen “modern” models usually outperform the
optimal classical model on the test set. But another important
practical advantage of overparameterized models is in optimiza-
tion. There is a growing understanding that larger models are
“easy” to optimize as local methods, such as SGD, converge to
global minima of the training risk in overparameterized regimes
(e.g., ref. 30). Thus, large interpolating models can have low
test risk and be easy to optimize at the same time, in particu-
lar with SGD (31). It is likely that the models to the left of the
interpolation peak have optimization properties qualitatively dif-
ferent from those to the right, a distinction of significant practical
import.

Outlook. The classical U-shaped bias–variance trade-off curve
has shaped our view of model selection and directed applica-
tions of learning algorithms in practice. The understanding of
model performance developed in this work delineates the lim-
its of classical analyses and opens additional lines of inquiry
to study and compare computational, statistical, and math-
ematical properties of the classical and modern regimes in
machine learning. We hope that this perspective, in turn, will
help practitioners choose models and algorithms for optimal
performance.
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