
Seminar: An Overview of Methods for Accurate Geometry Reconstruction

Fabian Schöttl

Garching, 27.11.2019

Fight Ill-Posedness with Ill-Posedness: 

Single-shot Variational Depth Super-Resolution from Shading

Haefner et al.



Motivation

• RGB-D cameras often output high-resolution color but low-resolution depth data



Motivation

• RGB-D cameras often output high-resolution color but low-resolution depth data

• Can we get high-resolution depth data?

• How can we interpolate missing depth data to fit color data?

• Using only one RGB-D image



Motivation

• RGB-D cameras often output high-resolution color but low-resolution depth data

• Can we get high-resolution depth data?

• How can we interpolate missing depth data to fit color data?

• Using only one RGB-D image

• Two solutions to this problem

• Both are ill-posed…
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Approach 1 – Single depth image super-resolution

• Estimate high resolution depth map 𝑧 from low resolution input 𝑧0

• Solve 𝑧0 = 𝐾 𝑧 + 𝜂𝑧 for 𝑧

• Requires inverting 𝐾

• Ill-posed since 𝐾 maps from high-res domain to low-res

• Use high-res RGB-image to guide interpolation between depth values
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• Invert image formation model

• 𝐼 = 𝑅 𝑧 𝑙, 𝜌 + 𝜂𝐼

• Previous methods can only estimate magnitude of depth gradient

• ∇𝑧 =
1

𝐼2
− 1

• Ill-posed since gradient direction is ambiguous

• Use low-res depth map to guide shape from shading

Approach 2 – Shape from shading
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• Recall: 𝑧0 = 𝐾 𝑧 + 𝜂𝑧
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• Image formation model

• 𝐼 = 𝑙 ⋅ 𝑚𝑧,∇𝑧 𝜌

• with 𝑙 ∈ ℝ4 and 𝑚𝑧,∇𝑧 =
𝑛𝑧
1

• Assume achromatic, directional (+ ambient) lighting
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• Problem is non-convex and non-smooth

• But converges in practice using a numerical solver
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Experimental validation

• Render Test model (color + depth)

• Single directional + ambient lighting

• Three different reflectance maps

• Gaussian noise on top of color/depth map



Experimental validation

• Evaluate root mean squared error between 

depth/albedo map and groundtruth maps

• Vary each hyperparameter 𝜇, 𝜈, 𝜆 to find optimum



Results

input colorinput depth

output albedooutput depth

input depth input color

output depth output albedo
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Summary

• Combine two ill-posed problems and solve ambiguities 

• Single shot depth super-resolution is ill-posed

• Shape from shading is ill-posed

• Intuitive solution

• Use high frequency color information to preserve detail in depth super-resolution

• Use low frequency depth map as a baseline for shape from shading

• Formulate a variational problem

• Maximize the posterior distribution of the input data

• Can be split into likelihood and prior distribution

• Solve numerically 


