BAD SLAM: Bundle Adjusted Direct RGB-D SLAM

T. Schöps, T. Sattler, M. Pollefeys - CVPR 2019

Alona Sakhnenko

Seminar presentation The Evolution of Motion Estimation and Real-time 3D Reconstruction

Introduction

Motivation

Motivation #1

In previous works on dense RGB-D SLAM, bundle adjustment (BA) was only **approximated**. ↓ We can improve the performance by using BA **directly**.

Motivation # 2

Direct RGB-D SLAM systems are highly sensitive to rolling shutter, RGB-D asynchronization and calibration errors. ↓ These problems are easier to fix on the hardware than model them out.

1. Introduction

- BAD SLAM: The algorithm
 SLAM Integration
 Back-end
 Front-end
- 3. New benchmark dataset
- 4. Performance

BAD SLAM: The algorithm

SLAM Architecture Overview

SLAM Architecture Overview

Keyframe is defined by an RGB-D frame and its 6 DoF camera pose.

Meshes: + arbitrary precision - expensive topology update - sensitive to noise	Voxels: + resilient to noise + efficient topology update - cannot represent thin surfaces	Surfels: + arbitrary precision + efficient topology update - sensitive to noise
		Ø

Keyframe

is defined by an RGB-D frame and its 6 DoF camera pose.

Meshes:

- + arbitrary precision
- expensive topology update
- sensitive to noise

- Voxels:
- + resilient to noise
- + efficient topology update
- cannot represent thin surfaces

Surfels:

- + arbitrary precision
- + efficient topology update
- sensitive to noise

Cost function

The cost is computed by projecting each surfel into each keyframe to establish correspondences with pixel measurements.

$$C(K,S) = \sum_{k}^{K} \sum_{s}^{S_{k}} \underbrace{\rho_{Tukey}(\sigma_{D}^{-1}r_{geom}(s,k))}_{\text{geometric constraint}} + \underbrace{\omega}^{10^{-2}} \underbrace{\rho_{Huber}(\sigma_{D}^{-1}r_{photo}(s,k))}_{\text{photometric constraint}}$$

$$C(K,S) = \sum_{k}^{K} \sum_{s}^{S_{k}} \rho_{Tukey}(\sigma_{D}^{-1}r_{geom}(s,k)) + \omega \rho_{Huber}(\sigma_{D}^{-1}r_{photo}(s,k))$$

Geometric residual

The distance between the surfel and measurement positions along the surfel's normal direction.

$$r_{geom}(s,k) = (\mathsf{T}_{G}^{k}\mathsf{n}_{s})^{\mathsf{T}}(\pi_{D,k}^{-1}(\hat{\pi}_{D,k}(\mathsf{T}_{G}^{k}\mathsf{p}_{s})) - \mathsf{T}_{G}^{k}\mathsf{p}_{s})$$

Normalisation factor σ_D^{-1} Uncertainty propagation of the measurement uncertainty in the depth direction.

Geometric constraint

 $C(K,S) = \sum_{k}^{K} \sum_{s}^{S_{k}} \rho_{Tukey}(\sigma_{D}^{-1}r_{geom}(s,k)) + \omega \rho_{Huber}(\sigma_{D}^{-1}r_{photo}(s,k))$

Tukey biweight loss function

$$\rho_{\text{Tukey},\delta}(x) = \begin{cases} x\left(1 - \frac{x^2}{\delta^2}\right)^2 & \text{for}|x| < \delta\\ 0 & \text{for}|x| > \delta \end{cases}$$

$$C(K,S) = \sum_{k}^{K} \sum_{s}^{S_{k}} \rho_{Tukey}(\sigma_{D}^{-1}r_{geom}(s,k)) + \omega \rho_{Huber}(\sigma_{D}^{-1}r_{photo}(s,k))$$

Photometric residual

Comparing the surfel's descriptor d_s to the surfel's projection into the image.

$$r_{photo}(s,k) = \left\| \begin{pmatrix} l(\pi_{l,k}(s_1)) - l(\pi_{l,k}(p_s)) \\ l(\pi_{l,k}(s_2)) - l(\pi_{l,k}(p_s)) \end{pmatrix} \right\|_2 - d_s$$

Normalisation factor σ_p^{-1} It's hard to model reflections and illumination changes $\rightarrow \sigma_p^{-1} = \frac{1}{180}$

Photometric constraint

$$C(K,S) = \sum_{k}^{K} \sum_{s}^{S_{k}} \rho_{Tukey}(\sigma_{D}^{-1}r_{geom}(s,k)) + \omega \rho_{Huber}(\sigma_{D}^{-1}r_{photo}(s,k))$$

Huber robust loss function

$$\rho_{Huber,\delta}(x) = \begin{cases} \frac{1}{2}x^2 & \text{for } |x| \le \delta\\ \delta(|x| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$$

Create new surfels for all keyframes

Update surfel normals \mathbf{n}_{s}

Optimize surfel positions \mathbf{p}_s and descriptors d_s

Optimize keyframe poses

Optimize camera intrinsics

Merge similar surfels

Create new surfels for all keyframes

```
if (no pixel in 4x4 cell correspond to a surfel):
randomly choose one depth measurement to create s;
p_s = T_k^G \pi_{D,k}^{-1}(p);
n_s = centered finite differences on depth img;
r_s = min (p_s - 3D points of 4-neighbothood of p);
d_s = r_{photo}(s, k);
```

Update surfel normals \mathbf{n}_{s}

Optimize surfel positions \mathbf{p}_s and descriptors d_s

Optimize keyframe poses

Optimize camera intrinsics

Merge similar surfels

Create new surfels for all keyframes

Update surfel normals $\ensuremath{n_{\text{s}}}$

For efficiency reasons:

ightarrow Average the normals of all corr. measurements;

→ Renormalize to unit vectors;

Optimize surfel positions \mathbf{p}_s and descriptors d_s

Optimize keyframe poses

Optimize camera intrinsics

Merge similar surfels

Create new surfels for all keyframes

Update surfel normals \boldsymbol{n}_{s}

Optimize surfel positions \mathbf{p}_s and descriptors d_s

Position param: A surfel moves only along $n_s \rightarrow$ optimize $p_s + tn_s$ for t. Jointly optimize p_s and d_s with a Gauss-Newton iteration of the cost function.

Optimize keyframe poses

Optimize camera intrinsics

Merge similar surfels

Create new surfels for all keyframes

Update surfel normals \boldsymbol{n}_{s}

Optimize surfel positions \mathbf{p}_s and descriptors d_s

Optimize keyframe poses

```
Pose update: \epsilon \in \mathfrak{se}(3)
```

```
Transformation param: T_G^k is updated as T_k^g \cdot exp(\hat{\epsilon})
```

Jointly optimize $\forall k$ poses with a Gauss-Newton iteration of the cost function.

Optimize camera intrinsics

Merge similar surfels

Create new surfels for all keyframes

Update surfel normals \mathbf{n}_{s}

Optimize surfel positions \mathbf{p}_s and descriptors d_s

Optimize keyframe poses

Optimize camera intrinsics

Merge similar surfels

Merge surfels with similar attributes: project surfels into all keyframes if (projected to the same cell): consider for merging

Create new surfels for all keyframes

Update surfel normals \mathbf{n}_{s}

Optimize surfel positions \mathbf{p}_s and descriptors d_s

Optimize keyframe poses

Optimize camera intrinsics

Merge similar surfels

Clean up surfels and update radius

 \rightarrow filter outlier surfels

ightarrow radius = min radius of all its corr. measurements

SLAM Architecture Overview

SLAM Architecture Overview

SLAM Front-End

Preprocessing

 \rightarrow apply bilateral filter to smooth depth map \rightarrow remove large depth measurements

Odometry

Estimate new RGB-D frame pose relative to the last keyframe: \rightarrow apply standard direct photometric and geometric image alignment in SE(3)

Keyframe selection

It's not adressed in the paper:

 \rightarrow select every 10th frame as a keyframe

Loop closure

Identify the keyframe *m* most similar to the lastest keyframe *k*:

- ightarrow extract binary independent elementary features
- \rightarrow apply bag-of-words approach

New benchmark dataset

Main features of the new dataset:

- Camera: global shutter, well-calibrate, synchronized frames
- Datasets: 61 training, 35 test.
- Benchmark: non-public ground truth, an online leaderboard.

Training datasets				
	cables, 1 - 1160 Intensis. The camera views score cable dutter on a table. This arrangement may make it hard to detect reliable features in the ROB Images.	cables_1_mono.zip cables_1_stereo.zip cables_1_rgbd.zip cables_1_mu.zip cables_1_raw.zip		
	cables_2 - 10 frames The cames views some cable clutter on a table while moving quickly. This arrangement may make it have to detect reliable features in the RGB images.	cables_2_mono.zip cables_2_stereo.zip cables_2_rgbd.zip cables_2_imu.zip cables_2_raw.zip		
	cables_3-313 fames. The camea views some cable duiter on a table while moving quickly. This arrangement may make it hard to detect reliable features in the RGB images.	cables_3_mono.zip cables_3_stereo.zip cables_3_rgbd.zip cables_3_imu.zip cables_3_raw.zip		
- C	camera_shake_1 - 318 frames The camera is shaken quickly. Using IMU data is probably very helpful here.	camera_shake_1_mono.zip camera_shake_1_stereo.zip camera_shake_1_rgbd.zip camera_shake_1_rgbd.zip		

Performance

Performance of different components

Figure 1: Ablation study

Figure 2: Runtime of the BA scheme

Performance comparison

Figure 3: Evaluation results on new benchmark (ATE RMSE)

Rank	Error	Algorithm
1	1.0	ORB-SLAM2
2	2.7	BundleFusion
2	2.7	BAD SLAM
3	3.0	ElasticFusion
4	6.3	DVO SLAM

Table 1: Average ranking on TUM RGB-D benchmark (ATE RMSE)

Major contributions of the paper

- Real-time direct bundle adjustment method
- Algorithm with state-of-the-art performance
- New public benchmarkt dataset

Algorithm prerequisites

- Very specific camera requirements
- No rapid illumination changes, no moving objects in the environment etc.

References i

R. I. H. Bill Triggs, Philip F. McLauchlan and A. W. Fitzgibbon.
 Bundle adjustment — a modern synthesis.
 Vision Algorithms: Theory and Practice, 1883:298–372, 1999.

C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
 I. Reid, and J. Leonard.
 Past, present, and future of simultaneous localization and

mapping: Towards the robust-perception age.

IEEE Transactions on Robotics, 32(6):1309–1332, 2016.

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.

CoRR, abs/1607.02565, 2016.

T. Schöps, T. Sattler, and M. Pollefeys. BAD SLAM: Bundle adjusted direct RGB-D SLAM. 2019.