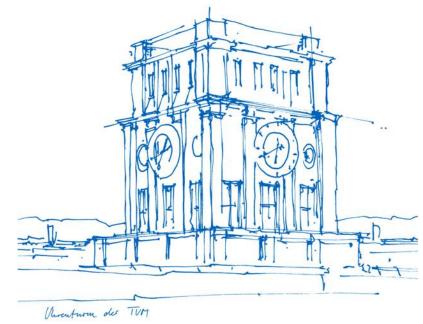


Master-Seminar - The Evolution of Motion Estimation and Real-time 3D Reconstruction

Markus Feurstein
Garching, 23. October 2019



Paper Presented

Dense Visual SLAM for RGB-D Cameras

Christian Kerl, Jurgen Sturm, and Daniel Cremers, 2013 IEEE/RSJ

Charts without source indicated stem from this paper

Depth Camera Images

Generates 2 data sets:

- Intensity Image
- Depth image

Rate: 10-30 Hz

Source: Peter Henry et.al. RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments, 2014

Motivation

- Want to know the pose (Location & Orientation) of the camera relative to world frame in real time
- System should be stable: Going around a closed loop should close the trajectory

Solution:

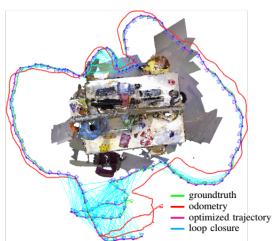
Photometric and geometric errors are used **simultaneously** using a **Bayesian approach**:

- Photometric model works well for scenes with texture
- Geometric model is works well for scenes with structure

Keyframe approach to define global map

Entropy based measures to select keyframes and loop
closure

Graph optimization



(a) texture

(b) structure

(c) structure + texture

Defining the Pose of the Camera

Estimate the frame to frame transformation T between image frames k and k+1

$$T_k^{k+1} = \begin{bmatrix} R_k^{k+1} & t_k^{k+1} \\ 0 & 1 \end{bmatrix}$$

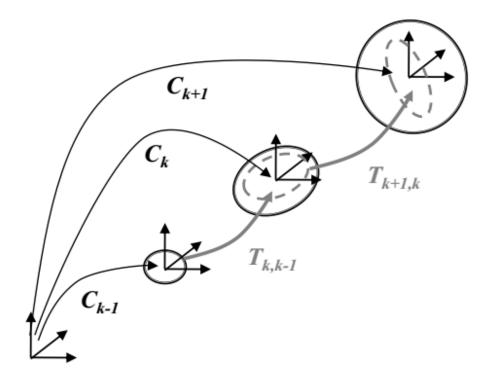
T has 6 DOF. Can be parameterized with 6 twist coordinates under Lie algebra *se*(3)

$$T(\xi) = e^{\hat{\xi}}$$

The pose C_k of the camera is given by concatenation

$$C_k = T_{k-1}^k * T_{k-2}^{k-1} * \dots * T_0^1$$

Problem: Lots of errors are accumulated



Pinhole Camera Model

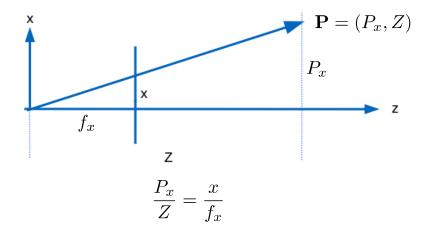
Back Projection of pixel to 3D point $\mathbf{P} = (P_x, P_y, Z)$

$$P = \Pi^{-1}(\mathbf{x}, Z) = Z * (\frac{x + c_x}{f_x}, \frac{y + c_y}{f_y}, 1)$$

Known from depth image

Projection from 3D point **P** to pixel coordinates **x**

$$\mathbf{x} = \Pi(\mathbf{P}) = \left(\frac{P_x * f_x}{Z} - c_x, \frac{P_y * f_y}{Z} - c_y\right)$$



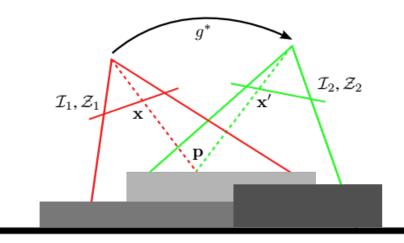
The Warping Function

Need relation between projections x and x' of point P

$$\mathbf{P} = \Pi^{-1}(\mathbf{x}, \mathcal{Z}_1)$$
$$\mathbf{P}' = T(\xi, \mathbf{P}) = \mathbf{R} * \mathbf{P} + \mathbf{t}$$
$$\mathbf{x}' = \Pi(\mathbf{P}')$$

Plugging all in gives warping function

$$\mathbf{x}' = \tau(\mathbf{x}, \xi) = \Pi(T(\xi, \Pi^{-1}(\mathbf{x}, \mathcal{Z}_1)))$$



Dense Estimation of Frame to Frame Transforms T

Photometric error:

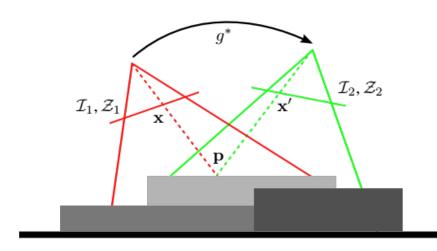
The intensity of point P seen in subsequent Images should be the same

$$r_i^I(\xi) = I_2(\tau(\mathbf{x_i}, \xi)) - I_1(\mathbf{x_i})$$

Geometric error:

The depths of x' in image 2 should be the same as the depths of P transformed from x.

$$r_i^Z(\xi) = \mathcal{Z}_2(\tau(\mathbf{x_i}, \xi)) - [T\Pi^{-1}(\mathbf{x_i}, \mathcal{Z}_1(\mathbf{x_i}))]_z$$

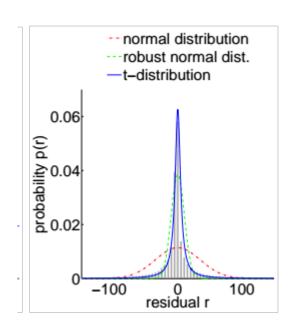


Simple Parameter Estimation:

Could use Ordinary Least Square to estimate parameters:

$$\xi_{OLS}^* = \underset{\xi}{\operatorname{argmin}} \sum_{i=1}^{N} (r_i(\xi))^2$$

Residuals not Gaussian!



Bayesian Parameter Estimation

Assuming iid. maximize posterior likelihood

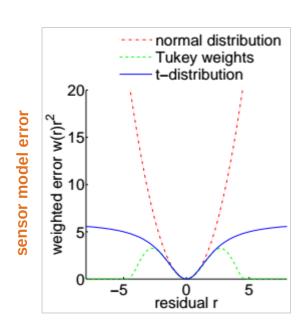
$$\xi_{MAP}^* = \underset{\xi}{\operatorname{argmax}} \sum_{i=1}^{N} \log(p(\xi|r_i))$$
 $p(\xi|r_i) = \frac{p(r_i|\xi)p(\xi)}{p(r_i)}$

$$\xi_{MAP}^* = \operatorname*{argmin}_{\xi} \sum_{i=1}^N -\log(p(r_i|\xi)) - \log(p(\xi))$$

$$\xi_{MAP} = \operatorname*{argmin}_{\xi} \sum_{i=1}^N -\log(p(r_i|\xi)) - \log(p(\xi))$$

Advantages

- Arbitrary distribution for sensor noise
- Can include prior knowledge on motion (not used)



Sensor Model

Contains both, photometric and geometric error

$$\mathbf{r}=(\mathbf{r}^I,\mathbf{r}^Z)$$

Modeled as bivariate t-distribution with unknown scale matrix Σ

Can be formulated as iteratively weighted least square:

$$\xi^* = \underset{\xi}{\operatorname{argmin}} \sum_{i=1}^N w_i \mathbf{r_i^T} \Sigma^{-1} \mathbf{r_i}$$
 with $w_i = \frac{\nu + 1}{\nu + \mathbf{r_i^T} \Sigma^{-1} \mathbf{r_i}}$

Advantages:

- Weighting between photometric and geometric error automatically optimized
- · Outliers are down weighted if either error component is large

Transformation Parameter Estimation

Use Gauss Newton algorithm:

- 1) Linearize **r** by taylor series expansion
- 2) Plug linearized \mathbf{r} into sensor model and set derivative wrt. $\Delta \xi$ to 0 \rightarrow normal equations:

Iteratively solve by EM algorithm for t-distribution:

- 1) E-Step:At iteration step s, we know ξ_s
- Update $\mathbf{r_i}(\xi_s, \mathbf{x_i}), \ \Sigma(\mathbf{r}, \mathbf{x}), \ w(\mathbf{r_i}, \Sigma), \ \mathbf{J_i}(\xi_s, \mathbf{x_i})$
- 2) M-Step: We know normal equation
- Solve for $\Delta \xi \rightarrow \xi_{s+1} = \xi_s + \Delta \xi$
- 3) s = s+1
- go to 1)

$$\mathbf{r}(\xi, \mathbf{x_i}) \approx \mathbf{r}(\mathbf{0}, \mathbf{x_i}) + \mathbf{J_i} \Delta \xi$$
$$\mathbf{J_i} = \frac{\partial \mathbf{r}(\tau(\mathbf{x_i}, \xi))}{\xi} \Delta \xi$$
$$\sum_{i=1}^{N} w_i \mathbf{J_i^T} \mathbf{\Sigma^{-1}} \Delta \xi = -\sum_{i=1}^{N} w_i \mathbf{J_i^T} \mathbf{\Sigma^{-1}} \mathbf{r_i}$$

Nice:

We get an estimate for parameter uncertainty for free (information theory)

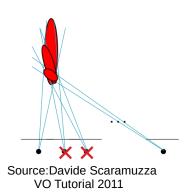
$$\Sigma_{\xi}^{-1} pprox \sum_{i=1}^{N} w_i \mathbf{J_i^T \Sigma^{-1}}$$

(needed for graph optimization later)

Keyfame-based SLAM

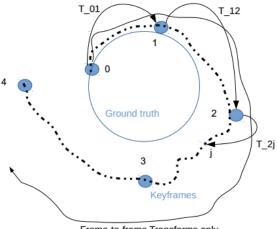
Problem: frame-to-frame transformation accumulate lots of errors

- Short baseline
- No relation between frame-to-frame transformations

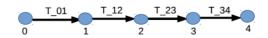


Solution:

- 1) Lengthen baseline
- Certain frames are selected as keyframes (How?)
- Pose of frame j is based on keyframes
- 2) Define keyframe map
- Keyframes are the nodes of a graph
- Edges are the frame transformations between nodes
- → Linear graph



Frame-to-frame Transforms only



Keyfame-based SLAM

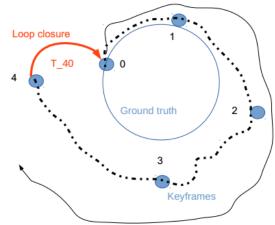
2) Detect loops:

New keyframe (4) is compared with other nodes (0) to detect loops, If test is successful:

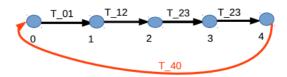
- → add new edge (orange) to graph
- → Transformation along loop not consistent

3) Optimize graph along loop:

- g2o framework
- weights proportional to parameter uncertainty $\; \Sigma_{\xi} \;$



Frame-to-frame Transforms only



Key Frame Selection

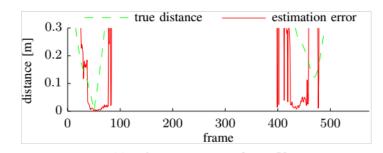
Is the current frame a keyframe?

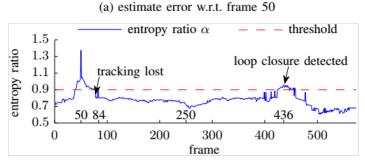
- Need a measure of uncertainty between last keyframe k and current frame j
- Differential Entropy $H(k,j) \propto log(|\Sigma_{k,j}|)$

$$\alpha(k,j) = \frac{H(k,j)}{H(k,k+1)}$$

If $\alpha > 0.9$

→ current frame j becomes the new keyframe k+1





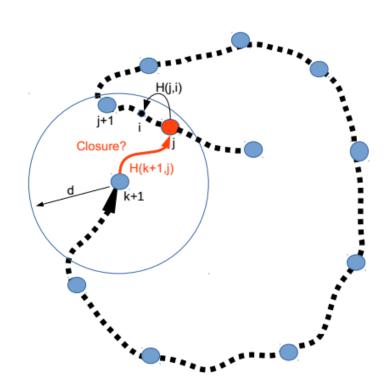
Closure Detection

Is the new keyframe k+1 closing a loop?

- 1) Selection of candidates:
- · Take keyframes within metric distance d
- 2) For each candidate j, evaluate ratio:

$$\beta(k+1,j) = \frac{H(k+1,j)}{\max_{i} (H(j,i))}, \quad j < i < j+1$$

- 3) Decide:
- If $\beta > 0.9 \rightarrow \text{loop closed} \rightarrow \text{insert edge}$



- 1) Comparison between bivariate and univariate RMSE [m/s]:
- Outperforms photo and geo method on data with only structure or texture.
- · Better generalization over different scenes
- 2) Influence of keyframe and map optimization RMSE [m/s]:
- Keyframe map brings 16% improvement
- Map optimization gives additional 4% (But big improvement in absolute trajectory error)
- 3) Relation of state of the art Visual Slam RMSE [m]:
- Absolute trajectory error best in class for most data sets

structure	texture	distance	RGB	Depth	RGB+Depth	
-	X	near	0.0591	0.2438	0.0275	
-	X	far	0.1620	0.2870	0.0730	
X	-	near	0.1962	0.0481	0.0207	
X	-	far	0.1021	0.0840	0.0388	
X	X	near	0.0176	0.0677	0.0407	
x	X	far	0.0170	0.0855	0.0390	

Dataset	RGB+D	RGB+D+KF	RGB+D+KF+Opt
fr1/desk	0.036	0.030	0.024
fr1/desk (v)	0.035	0.037	0.035
fr1/desk2	0.049	0.055	0.050
fr1/desk2 (v)	0.020	0.020	0.017
fr1/room	0.058	0.048	0.043
fr1/room (v)	0.076	0.042	0.094
fr1/360	0.119	0.119	0.092
fr1/360 (v)	0.097	0.125	0.096
fr1/teddy	0.060	0.067	0.043
fr1/floor	fail	0.090	0.232
fr1/xyz	0.026	0.024	0.018
fr1/xyz (v)	0.047	0.051	0.058
fr1/rpy	0.040	0.043	0.032
fr1/rpy (v)	0.103	0.082	0.044
fr1/plant	0.036	0.036	0.025
fr1/plant (v)	0.063	0.062	0.191
avg. improvement	0%	16%	20%

Dataset	# KF	Ours	RGB-D SLAM	MRSMap	KinFu
fr1/xyz	68	0.011	0.014	0.013	0.026
fr1/rpy	73	0.020	0.026	0.027	0.133
fr1/desk	67	0.021	0.023	0.043	0.057
fr1/desk2	93	0.046	0.043	0.049	0.420
fr1/room	186	0.053	0.084	0.069	0.313
fr1/360	126	0.083	0.079	0.069	0.913
fr1/teddy	181	0.034	0.076	0.039	0.154
fr1/plant	156	0.028	0.091	0.026	0.598
fr2/desk	181	0.017	-	0.052	-
fr3/office	168	0.035	-	-	0.064
average		0.034	0.054	0.043	0.297

Summary

- Probabilistic formulation for visual SLAM based on dense RGB-D images.
- Big advantage: ability to run in real time.
- The approach uses the photometric and the geometric error simultaneously to esimate frame to frame transformation.
- → Big improvement in generalization over other methods that set weights manually
- The performance of the methodology proposed outperforms other state-of-the-art algorithms on most benchmarks.
- The combination of the bivariate approach and the optimized keyframe map shines in terms of absolute trajectory error for long and complex datasets.

Backup Slides

Feature based SLAM



 I_k

