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Charts without source indicated stem from this paper



Depth Camera Images

Generates 2 data sets:
® |ntensity Image

® Depthimage

Rate: 10-30 Hz

Source: Peter Henry et.al. RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling
of Indoor Environments, 2014



Motivation

* Want to know the pose (Location & Orientation) of the
camera relative to world frame in real time

« System should be stable: Going around a closed loop
should close the trajectory

Solution:

Photometric and geometric errors are used
simultaneously using a Bayesian approach:

* Photometric model works well for scenes with texture

* Geometric model is works well for scenes with structure

Keyframe approach to define global map

Entropy based measures to select keyframes and loop
closure

Graph optimization

(a) texture

(b) structure

~— groundtruth
¢ = odometry
= optimized trajectory
—— loop closure

(c) structure + texture



Defining the Pose of the Camera

Estimate the frame to frame transformation
T between image frames k and k+1

Tk?+1 _ RZ+1 t]’:3:+1
k 0 1

T has 6 DOF. Can be parameterized with 6 twist
coordinates under Lie algebra se(3)

T(¢) = ¢
The pose C}. of the camera is given by concatenation
C, = T,f_l * T,f__; X ...k TO1

Problem: Lots of errors are accumulated

Source:Davide Scaramuzza , VO Tutorial 2011



Pinhole Camera Model

Back Projection of pixel to 3D point P = (P,, P, Z)
P=I""(x,2) = Z (¥4 v 1)

ER

Known from depth image

Projection from 3D point P to pixel coordinates x

P, x f, P, f,

Z Cx) Z - Cy)

x =TI(P) =

Z
P, x
Z [



The Warping Function

Need relation between projections x and x’ of point P
P=1I"'x,2)
P =T P)=R«P+t
x' =TI(P')

Plugging all in gives warping function

x' = 1(x,&) = (T T (x, Z1)))




Dense Estimation of Frame to Frame Transforms T

Photometric error:

The intensity of point P seen in subsequent Images
should be the same

ri (€) = I (7(x1,€)) — I1(x1)

Geometric error:

The depths of X’ in image 2 should be the same
as the depths of P transformed from x.

ri (&) = Za(7(x1,€)) — [T (x4, Z1(x3))]:
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Simple Parameter Estimation:

) ) normal distribution
Could use Ordinary Least Square to estimate parameters: robust normal dist.
—t—distribution

N 0.06
* o . 2 =
oL = argmin E :("“z‘(f)) Q.
¢ — £0.04
=1 =
m
8
5 0.02
Residuals not Gaussian!

=100 0 100
residual r
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Bayesian Parameter Estimation

----- normal distribution

Assuming iid. maximize posterior likelihood Tukey weights

N ( | 5) ( 5) —— t—distribution
* p(ri|c)p 20 :
Evap = argmaleog(p(f\ri)) p(€lri) = =< _
] p(ri) S L
5 $15
N % E
Ehrap = argmin »  —log(p(ri[€)) — log(p(€)) e o0
¢ =1 Sensor Model Motion Prior 5 £
n =
Advantages 0= 0 5

« Arbitrary distribution for sensor noise residual r

* Can include prior knowledge on motion (not used)



Sensor Model

Contains both, photometric and geometric error

r = (r!,r?)
Modeled as bivariate t-distribution with unknown scale matrix
Can be formulated as iteratively weighted least square:

N X - |
* ; E w; Ty —1,. ' w; =
'3 arg;nm 2 w;ry 27T wi ey rTy-1p,

Advantages:
* Weighting between photometric and geometric error automatically optimized

* Qutliers are down weighted if either error component is large
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Transformation Parameter Estimation
r(&,x;) = r(0,%x;) + J; A&
Use Gauss Newton algorithm:
1) Linearize r by taylor series expansion 3. — Or(7(x,§)) A

§
2) Plug linearized r into sensor model and N N
set derivative wrt. ASto 0 > wITETTAL = - w IS
— normal equations: i=1 i=1

Iteratively solve by EM algorithm for t-distribution:

1) E-Step:At iteration step s, we know &s
° Update ri(fS7Xi)7 E(I',X), w(rhE)a Ji(§S7Xi)
2) M-Step: We know normal equation Nice:

 Solve for A§ — &st1=2E& +A¢ We get an estimate for parameter
uncertainty for free (information theory)

3)s =s+1
) D DA TS F ot

e goto1)
(needed for graph optimization later)



Keyfame-based SLAM

Problem: frame-to-frame transformation

accumulate lots of errors

* Short baseline

* No relation between |\
frame-to-frame transformations ° X X e

Source:Davide Scaramuzza
VO Tutorial 2011

Solution:

1) Lengthen baseline
* Certain frames are selected as keyframes (How?)
* Pose of frame j is based on keyframes

2) Define keyframe map

» Keyframes are the nodes of a graph PPN £ N NP £T0P
* Edges are the frame transformations between nodes 0 1 2 3 4

— Linear graph



Keyfame-based SLAM

2) Detect loops:

New keyframe (4) is compared with other nodes (0) to
detect loops, If test is successful:

— add new edge (orange) to graph

— Transformation along loop not consistent

3) Optimize graph along loop:
* g2o0 framework
* weights proportional to parameter uncertainty > ¢




Key Frame Selection

|s the current frame a keyframe?

* Need a measure of uncertainty between last
keyframe k and current frame |
* Differential Entropy  H(k, j) o log(|Xk;|)

Scene invariant measure: H(k, )
Eoj)= ——\0J)

If o >0.9
— current frame j becomes the new keyframe k+1

distance [m]

entropy ratio
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true distance estimation error

0.3 L |
0.2
0.1
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frame
(a) estimate error w.r.t. frame 50
15 entropy ratio o — — — threshold
1.3 . loop closure detected
1.1 tracking lost
09 +"4¢ — — — — — — — — — —
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Closure Detection

Is the new keyframe k+1 closing a loop?

1) Selection of candidates:

* Take keyframes within metric distance d

2) For each candidate j, evaluate ratio: |

H(k+1,j)
meian(H(j, i))

Bk+1,5)= , J<i<jg+1

3) Decide:
* If3>0.9 - loop closed - insert edge
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structure  texture  distance RGB Depth  RGB+Depth

- X near 0.0591 0.2438 0.0275

R I t - X far 0.1620  0.2870 0.0730
esu S X near 0.1962  0.0481 0.0207

X far 0.1021 0.0840 0.0388

. . . . . X X near 0.0176  0.0677 0.0407

1) Comparison between bivariate and univariate RMSE [m/s]: X x far 00170  0.0855 0.0390
* Outperforms photo and geo method on data with only Dataset RGB:D  RGB+D+KF RGB+D+KF+Opt
structure or texture. fildesk (¥ 0.035 0.037 0038
t:rl!dcskZ ’ 0.0::9 (l.[)ii 0.050

 Better generalization over different scenes piym— oo ooss 0043
frl/room (v) 0.076 0.042 0.094

fr1/360 0.119 0.119 0.092

fr1/360 (v) 0.097 0.125 0.096

irl/teddy 0.060 0.067 0.043

. . . t:rl!ﬂoar fail 0.090 0.232

2) Influence of keyframe and map optimization RMSE [m/s]: e 0.026 0.024 o1
 Keyframe map brings 16% improvement ity o oo 0o
frl/plant 0.036 0.036 0.025

1 H H H HH 0 H frl/plant (v) 0.063 0.062 0.191

* Map optimization gives additional 4% (But big S T o— o -

improvement in absolute trajectory error)

Dataset #KF  Ours \ RGB-D SLAM  MRSMap  KinFu

frl/xyz 68 0.011 0.014 0.013 0.026
frl/rpy 73 0.020 0.026 0.027 0.133
. . frl/desk 67  0.021 0.023 0.043 0.057
3) Relation of state of the art Visual Slam RMSE [m]: frifdesk2 93 0.046 0.043 0049 0420
frl/room 186 0.053 0.084 0.069 0.313
. . fr1/360 126 0.083 0.079 0.069 0913
 Absolute trajectory error best in class for most data sets frifeddy 181 0034 | 0076 0039 0154
frl/plant 156 0.028 0.091 0.026 0.598
fr2/desk 181  0.017 - 0.052 -
fri/office 168 0.035 - 0.064

average 0.034 | 0.054 0.043 0.297




Summary

* Probabilistic formulation for visual SLAM based on dense RGB-D images.
* Big advantage: ability to run in real time.

* The approach uses the photometric and the geometric error simultaneously
to esimate frame to frame transformation.
— Big improvement in generalization over other methods that set weights manually

* The performance of the methodology proposed outperforms other
state-of-the-art algorithms on most benchmarks.

* The combination of the bivariate approach and the optimized keyframe map
shines in terms of absolute trajectory error for long and complex datasets.



Backup Slides



Feature based SLAM

Source:Davide Scaramuzza , VO Tutorial 2011
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