

Computer Vision Group Prof. Daniel Cremers

Practical Course: Vision-based Navigation Winter Semester 2019

Lecture 1. 3D Geometry and Lie Groups

Vladyslav Usenko, Nikolaus Demmel, Prof. Dr. Daniel Cremers

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

General overview of computer vision tasks

Computer vision

Object detection Object recognition Object tracking Segmentation

SLAM

CV tasks

Image and video sequences

Real world cameras

What is SLAM? Simultaneous localization and mapping

Indoor/outdoor localization

• What is SLAM?

Dense/semi-dense reconstruction

What is SLAM?

ElasticFusion: Dense SLAM Without A Pose Graph

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, Andrew Davison

Imperial College London

RGB-D dense reconstruction

SLAM applications

Hand-held devices

Autonomous driving

Augmented reality/VR

Computer vision

Harley and Zisserman, Multiple view geometry in computer vision

Tim Barfoot, State estimation for robotics

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

- SLAM problem
 - Fundamental problems in intelligent robots
 - Where am I?
 -Localization
 - What is around me?
 Mapping
- Chicken and egg problem
 - Localization needs accurate map
 - Mapping needs accurate localization

- How to do SLAM? -Sensors
- Sensor is the way to measure the outside environment
- Interoseptive sensors: accelerometer, gyroscope ...
- Exteroceptive sensors: camera, laser rangefinder, GPS ...

(a)

(C)

(f)

Some sensors must be placed in a cooperative environment, other can be directly equipped in the robot itself

- Visual SLAM
- Cameras
 - Monocular
 - Stereo
 - RGB-D
 - Omnidirectional, Event camera, etc

Monocular camera

RGB-D (depth) camera

Stereo camera

- Cameras
 - Cheap, rich information
 - Record 2D projected image of the 3D world
 - The 3D-2D projection throws away one dimension: distance

- Various kinds of cameras:
- Monocular: image only, need other methods to estimate the depth
- Stereo: disparity to depth
- RGB-D: physical depth measurements

Stereo vision estimates the depth from disparity

Moving stereo: disparity can be estimated in the motion

Ambiguity in mono vision: small + close or large + far away?

SLAM framework

- Visual odometry
 - Motion estimation between adjacent frames
 - Simplest: two-view geometry
- Method
 - Feature method
 - Direct method
- Backend
 - Long-term trajectory and map estimation
 - MAP: Maximum of a Posteri
 - Filters/Graph Optimization

- Loop closing
 - Correct the drift in estimation
 - Loop detection and correction

Mapping

- Generate globally consistent map for navigation/planning/commu nication/visualization etc
- Grid/topological/hybrid maps
- Pointcloud/Mesh/TSDF ...

2D grid map

Point cloud maps

2D topological map

TSDF models

2]。

- Mathematical representation of visual SLAM
- Assume a camera is moving in 3D space
 - But measurements are taken at discrete times:

$$\begin{aligned} \boldsymbol{x}_{k} &= f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) \\ \boldsymbol{z}_{k,j} &= h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k,j}\right) \end{aligned} \quad \begin{array}{l} \text{Motion model} \\ \text{Observation model} \end{aligned} \quad \begin{cases} \boldsymbol{x}_{k} &= A_{k} \boldsymbol{x}_{k-1} + B_{k} \boldsymbol{u}_{k} + \boldsymbol{w}_{k} \\ \boldsymbol{z}_{k,j} &= \mathcal{C}_{j} \boldsymbol{y}_{j} + D_{k} \boldsymbol{x}_{k} + \boldsymbol{v}_{k,j} \end{cases} \end{aligned}$$

Non-linear form

linear form

- 2. Framework of SLAM
 - Questions:

$$\begin{cases} \boldsymbol{x}_{k} = f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) \\ \boldsymbol{z}_{k,j} = h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k,j}\right) \end{cases}$$

Motion model

Observation model

- How to represent state variables?
 - 3D geometry, Lie group and Lie algebra
- Exact form of motion/observation model?
 - Camera intrinsic and extrinsics
- How to estimate the state given measurement data?
 - State estimation problem
 - Filters and optimization

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

- Point and Coordinate system
- 2D: (x,y) and angle
- 3D?

- 3D coordinate system
- Vectors and their coordinates

- Vector operations
 - Addition/subtraction
 - Dot product

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}^T \boldsymbol{b} = \sum_{i=1}^3 a_i b_i = |\boldsymbol{a}| |\boldsymbol{b}| \cos \langle \boldsymbol{a}, \boldsymbol{b} \rangle.$$

Cross product

$$oldsymbol{a} imes oldsymbol{b} = \left[egin{array}{cccc} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array}
ight] = \left[egin{array}{ccccc} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{array}
ight] = \left[egin{array}{ccccccc} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{array}
ight] oldsymbol{b} imes oldsymbol{a}^\wedge oldsymbol{b}.$$

Skew-symmetric operator

- Questions
 - Compute the coordinates in different systems?

- In SLAM:
 - Fixed world frame
 - Moving camera frame
 - Other sensor frames

3D rigid body motion can be described with rotation and translation

- Translation is just a vector addition
- How to represent rotations?

- Rotation
 - Consider coordinate system (e_1, e_2, e_3) is rotated and become $(e_1^{'}, e_2^{'}, e_3^{'})$
 - Vector *a* is fixed, then how are its coordinates changed?

$$\begin{bmatrix} \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \boldsymbol{e}_1', \boldsymbol{e}_2', \boldsymbol{e}_3' \end{bmatrix} \begin{bmatrix} a_1' \\ a_2' \\ a_3' \end{bmatrix}$$

• Left multiplied by $[e_1^T, e_2^T, e_3^T]^T$

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} = \begin{bmatrix} e_{1}^{T} e_{1}^{'} & e_{1}^{T} e_{2}^{'} & e_{1}^{T} e_{3}^{'} \\ e_{2}^{T} e_{1}^{'} & e_{2}^{T} e_{2}^{'} & e_{2}^{T} e_{3}^{'} \\ e_{3}^{T} e_{1}^{'} & e_{3}^{T} e_{2}^{'} & e_{3}^{T} e_{3}^{'} \end{bmatrix} \begin{bmatrix} a_{1}^{'} \\ a_{2}^{'} \\ a_{3}^{'} \end{bmatrix} \stackrel{\Delta}{=} \mathbf{R} \mathbf{a}^{'}.$$
 Rotation matrix

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} e_1^T e_1' & e_1^T e_2' & e_1^T e_3' \\ e_2^T e_1' & e_2^T e_2' & e_2^T e_3' \\ e_3^T e_1' & e_3^T e_2' & e_3^T e_3' \end{bmatrix} \begin{bmatrix} a_1' \\ a_2' \\ a_3' \end{bmatrix} \stackrel{\Delta}{=} \mathbf{R} \mathbf{a}'.$$

- R is rotation matrix, which satisfies:
 - R is orthogonal
 - Det(R) = +1 (if Det(R)=-1 then it's improper rotation)
- Special orthogonal group:

$$SO(n) = \{ \boldsymbol{R} \in \mathbb{R}^{n \times n} | \boldsymbol{R} \boldsymbol{R}^T = \boldsymbol{I}, \det(\boldsymbol{R}) = 1 \}.$$

Rotation from frame 2 to 1 can be written as:

$$a_1 = R_{12}a_2$$
 and vise vesa: $a_2 = R_{21}a_1$
 $R_{21} = R_{12}^{-1} = R_{12}^T$

Rotation plus translation:

$$a' = Ra + t.$$

Compounding rotation and translation:

$$\bullet \quad b = \mathbf{R}_1 \mathbf{a} + \mathbf{t}_1, \quad \mathbf{c} = \mathbf{R}_2 \mathbf{b} + \mathbf{t}_2. \quad \blacksquare \quad \bullet \quad \mathbf{c} = \mathbf{R}_2 \left(\mathbf{R}_1 \mathbf{a} + \mathbf{t}_1 \right) + \mathbf{t}_2.$$

Homogeneous form:

$$\begin{bmatrix} a'\\1 \end{bmatrix} = \begin{bmatrix} R & t\\0^T & 1 \end{bmatrix} \begin{bmatrix} a\\1 \end{bmatrix} \stackrel{\Delta}{=} T \begin{bmatrix} a\\1 \end{bmatrix} \cdot \qquad \tilde{b} = T_1 \tilde{a}, \ \tilde{c} = T_2 \tilde{b} \quad \Rightarrow \tilde{c} = T_2 T_1 \tilde{a}.$$
Inverse:
$$T^{-1} = \begin{bmatrix} R^T & -R^T t\\0^T & 1 \end{bmatrix}.$$

Homogenous coordinates:

$$\tilde{a} = \begin{bmatrix} a \\ 1 \end{bmatrix} \qquad \qquad \tilde{a} = \begin{bmatrix} a \\ 1 \end{bmatrix} = k \begin{bmatrix} a \\ 1 \end{bmatrix}$$

Still keeps equal when multiplying any non-zero factors

Transform matrix forms Special Euclidean Group

$$SE(3) = \left\{ \boldsymbol{T} = \left[\begin{array}{cc} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0}^T & \boldsymbol{1} \end{array} \right] \in \mathbb{R}^{4 \times 4} | \boldsymbol{R} \in SO(3), \boldsymbol{t} \in \mathbb{R}^3 \right\}.$$

- Alternative rotation representations
 - **Rotation vectors**
 - Euler angles
 - Quaternions
- Rotation vectors
 - Angle + axis: θn
 - Rotation angle θ
 - Rotation axis n

b a

Rotation vectors Only three parameters

Rotation vector to rotation matrix: Rodrigues' formula

$$\boldsymbol{R} = \cos \theta \boldsymbol{I} + (1 - \cos \theta) \boldsymbol{n} \boldsymbol{n}^{T} + \sin \theta \boldsymbol{n}^{\wedge}.$$

Inverse: $\theta = \arccos(\frac{\operatorname{tr}(\boldsymbol{R}) - 1}{2}).$ Rn = n. $\ln(\mathbf{R}) = \frac{1}{2\sin\theta} \left(\mathbf{R} - \mathbf{R}^{\top} \right)$

w

- Euler angles
 - Any rotation can be decomposed into three principal rotations

- However the order of axis can be defined very differently:
- Roll-pitch-yaw (in navigation)
 Spin-nutation-precession in mechanics

XYZ order

3-1-3 order

- Gimbal lock
 - Singularity always exist if we want to use 3 parameters to describe rotation
 - Degree-of-Freedom is reduced in singular case
 - In yaw-pitch-roll order, when pitch=90 degrees

singular

normal

- Quaternions
 - In 2D case, we can use (unit) complex numbers to denote rotations

$$z = x + iy = \rho e^{i\theta}$$

- How about 3D case?
- (Unit) Quaternions
 - Extended from complex numbers
 - Three imaginary and one real part:

$$\boldsymbol{q} = q_0 + q_1 \boldsymbol{i} + q_2 \boldsymbol{j} + q_3 \boldsymbol{k},$$

Multiply i to rotate 90 degrees

The imaginary parts satisfy:

$$\begin{cases} i^{2} = j^{2} = k^{2} = -1 \\ ij = k, ji = -k \\ jk = i, kj = -i \\ ki = j, ik = -j \end{cases}$$

i,j,k look like complex numbers when multiplying with themselvesAnd look like cross product when multiply with others

Ouaternions

$$q = q_0 + q_1 i + q_2 j + q_3 k,$$
 $q = [s, v], \quad s = q_0 \in \mathbb{R}, v = [q_1, q_2, q_3]^T \in \mathbb{R}^3,$

Operations

$$m{q}_a \pm m{q}_b = [s_a \pm s_b, m{v}_a \pm m{v}_b]. \qquad \qquad m{q}_a^* = s_a - x_a i - y_a j - z_a k = [s_a, -m{v}_a].$$

$$\begin{aligned} q_a q_b &= s_a s_b - x_a x_b - y_a y_b - z_a z_b \\ &+ (s_a x_b + x_a s_b + y_a z_b - z_a y_b) i \\ &+ (s_a y_b - x_a z_b + y_a s_b + z_a x_b) j \\ &+ (s_a z_b + x_a y_b - y_b x_a + z_a s_b) k. \end{aligned}$$

$$oldsymbol{q}_aoldsymbol{q}_b = \left[s_as_b - oldsymbol{v}_a^Toldsymbol{v}_b, s_aoldsymbol{v}_b + s_boldsymbol{v}_a + oldsymbol{v}_a imesoldsymbol{v}_b
ight].$$

$$\boldsymbol{q}_a^* = s_a - x_a i - y_a j - z_a k = [s_a, -\boldsymbol{v}_a].$$

$$\|\boldsymbol{q}_a\| = \sqrt{s_a^2 + x_a^2 + y_a^2 + z_a^2}.$$

$$q^{-1} = q^* / ||q||^2.$$

$$k\boldsymbol{q} = [ks, k\boldsymbol{v}].$$

$$\boldsymbol{q}_a \cdot \boldsymbol{q}_b = s_a s_b + x_a x_b i + y_a y_b j + z_a z_b k.$$

From quaternions to angle-axis:

$$\boldsymbol{q} = \left[\cos\frac{\theta}{2}, n_x \sin\frac{\theta}{2}, n_y \sin\frac{\theta}{2}, n_z \sin\frac{\theta}{2}\right]^T$$

$$\begin{cases} \theta = 2 \arccos q_0 \\ \left[n_x, n_y, n_z \right]^T = \left[q_1, q_2, q_3 \right]^T / \sin \frac{\theta}{2} \end{cases}$$

- Rotate a vector by quaternions:
 - Vector p is rotated by q and become p', how to write their relationships?
 - Write p as quaternion (pure imaginary): p = [0, x, y, z] = [0, v].
 - Then: $m{p}' = m{q} m{p} m{q}^{-1}$. Also pure imaginary

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

Recall the mathematic model of SLAM

$$\left\{ \begin{array}{ll} \boldsymbol{x}_{k} = f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) & \text{Motion model} \\ \boldsymbol{z}_{k,j} = h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k,j}\right) & \text{Observation model} \end{array} \right.$$

- We use SO(3) and SE(3) to represent the pose of camera
- Let's consider optimizing some function of rotation/transform

$$f(R)$$
 $\frac{df}{dR}$ $\frac{f(R + \Delta R) - f(R)}{\Delta R}$

Rotation and transform matrix don't have a plus operator!

Group

• 3D rotation matrix forms the Special Orthogonal Group

$$SO(3) = \{ \boldsymbol{R} \in \mathbb{R}^{3 \times 3} | \boldsymbol{R} \boldsymbol{R}^T = \boldsymbol{I}, det(\boldsymbol{R}) = 1 \}.$$

• 3D transform matrix forms the Special Euclidean Group

$$SE(3) = \left\{ \boldsymbol{T} = \left[\begin{array}{cc} \boldsymbol{R} & \boldsymbol{t} \\ \boldsymbol{0}^T & \boldsymbol{1} \end{array} \right] \in \mathbb{R}^{4 \times 4} | \boldsymbol{R} \in SO(3), \boldsymbol{t} \in \mathbb{R}^3 \right\}.$$

What is Group?

Group

• Group is a set with an operator (A, \cdot) that satisfies the following:

1. Closure $\forall a_1, a_2 \in A, \quad a_1 \cdot a_2 \in A.$ 2. Associativity $\forall a_1, a_2, a_3 \in A, \quad (a_1 \cdot a_2) \cdot a_3 = a_1 \cdot (a_2 \cdot a_3).$ 3. Identity $\exists a_0 \in A, \quad s.t. \quad \forall a \in A, \quad a_0 \cdot a = a \cdot a_0 = a.$ 4. Invertibility $\forall a \in A, \quad \exists a^{-1} \in A, \quad s.t. \quad a \cdot a^{-1} = a_0.$

Obviously,

■ (*SO*(3),·), (*SE*(3),·) are groups

- Lie Group
 - Group that is smooth
 - Group that is also a manifold
 - "Locally looks like Rⁿ"
 - Further explanation needs knowledge from topology and differential geometry
 - SO(3) and SE(3) are also Lie groups
- Lie Algebra
 - Tangent space of the Lie group at identity
 - SO(3)->so(3), SE(3)->se(3)

- Introducing of the Lie Algebra
 - Assume a time-varying rotation matrix R(t)
 - It satisfies: $\mathbf{R}(t)\mathbf{R}(t)^T = \mathbf{I}$.
 - Take derivative of time *t* at both sides:

$$\dot{\boldsymbol{R}}(t)\boldsymbol{R}(t)^T + \boldsymbol{R}(t)\dot{\boldsymbol{R}}(t)^T = 0.$$

• Rearrange: $\dot{\boldsymbol{R}}(t)\boldsymbol{R}(t)^T = -\left(\dot{\boldsymbol{R}}(t)\boldsymbol{R}(t)^T\right)^T$.

Skew-symmetric

$$a^{\wedge} = A = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}, \quad A^{\vee} = a.$$

• Denote the skew-symmetric matrix as $\phi(t)^{\wedge}$

$$\dot{\boldsymbol{R}}(t)\boldsymbol{R}(t)^{T} = -\left(\dot{\boldsymbol{R}}(t)\boldsymbol{R}(t)^{T}\right)^{T}.\qquad \dot{\boldsymbol{R}}(t)\boldsymbol{R}(t)^{T} = \boldsymbol{\phi}(t)^{\wedge}.$$

- Put R(t) to the right side: $\dot{R}(t) = \phi(t)^{\wedge} R(t)$
- It looks like when we take the derivative, we will get a φ(t)[^] at the left side
- Assume we are close to identity: $t_0 = 0, R(0) = I$
- And $\phi(t)^{\wedge}$ does not change: $\dot{\mathbf{R}}(t) = \phi(t_0)^{\wedge} \mathbf{R}(t) = \phi_0^{\wedge} \mathbf{R}(t)$.
- With R(0) = I, we solve this ODE:

$$\boldsymbol{R}(t) = \exp\left(\boldsymbol{\phi}_0^{\wedge} t\right).$$

- So, if t is close to 0, then we can always find an R given ϕ
- ϕ is called a Lie algebra
- From a Lie algebra, if we take a Exponential Map, then it becomes a Lie group
- Questions:
 - Lie algebra's definition and constraints?
 - How to compute the exponential map?

- Lie algebra:
 - We have a Lie algebra for each Lie group, which is a vector space (the tangent space) at the identity
 - Lie algebra has a vector space V over field F together with a binary operator (Lie bracket) [,], that satisfies:
 - Closure: $\forall X, Y \in \mathbb{V}, [X, Y] \in \mathbb{V}.$
 - Bilinearity: for any $\forall X, Y, Z \in \mathbb{V}, a, b \in \mathbb{F}$,

 $[a\mathbf{X} + b\mathbf{Y}, \mathbf{Z}] = a[\mathbf{X}, \mathbf{Z}] + b[\mathbf{Y}, \mathbf{Z}], \quad [\mathbf{Z}, a\mathbf{X} + b\mathbf{Y}] = a[\mathbf{Z}, \mathbf{X}] + b[\mathbf{Z}, \mathbf{Y}].$

- Alternativity: $\forall X \in \mathbb{V}, [X, X] = 0.$
- Jacobi identity:

 $\forall X, Y, Z \in \mathbb{V}, [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.$

• Example: (R^3, R, \times) is a Lie algebra

where

• Lie algebra so(3): $\mathfrak{so}(3) = \{ \phi \in \mathbb{R}^3, \Phi = \phi^{\wedge} \in \mathbb{R}^{3 \times 3} \}.$

$$\Phi = \phi^{\wedge} = \begin{bmatrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$

• And the Lie bracket is: $[\phi_1, \phi_2] = (\Phi_1 \Phi_2 - \Phi_2 \Phi_1)^{\vee}$.

• Similarly, for SE(3) we also have se(3):

$$\mathfrak{se}(3) = \left\{ \boldsymbol{\xi} = \left[\begin{array}{c} \boldsymbol{\rho} \\ \boldsymbol{\phi} \end{array} \right] \in \mathbb{R}^{6}, \boldsymbol{\rho} \in \mathbb{R}^{3}, \boldsymbol{\phi} \in \mathfrak{so}\left(3\right), \boldsymbol{\xi}^{\wedge} = \left[\begin{array}{c} \boldsymbol{\phi}^{\wedge} & \boldsymbol{\rho} \\ \mathbf{0}^{T} & \mathbf{0} \end{array} \right] \in \mathbb{R}^{4 \times 4} \right\}.$$

• Where
$$\boldsymbol{\xi}^{\wedge} = \begin{bmatrix} \phi^{\wedge} & \rho \\ \mathbf{0}^{T} & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4}.$$
 and Lie bracket is:
$$[\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}] = (\boldsymbol{\xi}_{1}^{\wedge} \boldsymbol{\xi}_{2}^{\wedge} - \boldsymbol{\xi}_{2}^{\wedge} \boldsymbol{\xi}_{1}^{\wedge})^{\vee}$$

NOTE in se(3) this operator is not a skew-symmetric matrix, but we still keeps its form

- Note:
 - The definition of se(3) may be different in literature
 - Vector or matrix are both ok to define a lie algebra

- Exponential map
 - Operator from Lie algebra to Lie group:

$$R = \exp(\phi^{\wedge})$$

- Here ϕ^{\wedge} is a 3x3 matrix so this exponential map is a matrix operator
- Take Taylor expansion:

$$\exp(\phi^{\wedge}) = \sum_{n=0}^{\infty} \frac{1}{n!} (\phi^{\wedge})^n.$$

Directly computing this Taylor expansion is intractable

- Take the length and direction of ϕ , then $\phi = \theta a$
- For a unit-length vector, we have:

$$a^{\wedge}a^{\wedge}=aa^{T}-I,$$

 $a^{\wedge}a^{\wedge}a^{\wedge} = -a^{\wedge}.$

This will be useful when handling the high-order Taylor expansion items

Compute the Taylor expansion:

$$\begin{split} \exp\left(\phi^{\wedge}\right) &= \exp\left(\theta a^{\wedge}\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (\theta a^{\wedge})^{n} \\ &= I + \theta a^{\wedge} + \frac{1}{2!} \theta^{2} a^{\wedge} a^{\wedge} + \frac{1}{3!} \theta^{3} a^{\wedge} a^{\wedge} a^{\wedge} + \frac{1}{4!} \theta^{4} (a^{\wedge})^{4} + \dots \\ &= a a^{T} - a^{\wedge} a^{\wedge} + \theta a^{\wedge} + \frac{1}{2!} \theta^{2} a^{\wedge} a^{\wedge} - \frac{1}{3!} \theta^{3} a^{\wedge} - \frac{1}{4!} \theta^{4} (a^{\wedge})^{2} + \dots \\ &= a a^{T} + \left(\theta - \frac{1}{3!} \theta^{3} + \frac{1}{5!} \theta^{5} - \dots\right) a^{\wedge} - \left(1 - \frac{1}{2!} \theta^{2} + \frac{1}{4!} \theta^{4} - \dots\right) a^{\wedge} a^{\wedge} \\ &= a^{\wedge} a^{\wedge} + I + \sin \theta a^{\wedge} - \cos \theta a^{\wedge} a^{\wedge} \\ &= (1 - \cos \theta) a^{\wedge} a^{\wedge} + I + \sin \theta a^{\wedge} \\ &= \cos \theta I + (1 - \cos \theta) a a^{T} + \sin \theta a^{\wedge}. \end{split}$$

• Finally we get:

$$\exp(\theta a^{\wedge}) = \cos \theta I + (1 - \cos \theta) a a^{T} + \sin \theta a^{\wedge}.$$

Which is exactly the Rodrigues' formula!

- So so(3) is just the rotation vector
- Same as exponential map, we can also define logarithm map as:

$$\phi = \ln \left(\boldsymbol{R} \right)^{\vee} = \left(\sum_{n=0}^{\infty} \frac{\left(-1 \right)^n}{n+1} \left(\boldsymbol{R} - \boldsymbol{I} \right)^{n+1} \right)^{\vee}.$$

And also don't need to actually compute this stuff, we take the conversion equations from rotation matrix to rotation vector:

$$\theta = \arccos(\frac{\operatorname{tr}(\boldsymbol{R}) - 1}{2}).$$
 $\boldsymbol{R}\boldsymbol{n} = \boldsymbol{n}.$

$$\ln(\mathbf{R}) = \frac{1}{2\sin\theta} \left(\mathbf{R} - \mathbf{R}^{\top} \right)$$

• For SE(3), the exponential map is:

$$\exp\left(\boldsymbol{\xi}^{\wedge}\right) = \begin{bmatrix} \sum_{n=0}^{\infty} \frac{1}{n!} (\phi^{\wedge})^{n} & \sum_{n=0}^{\infty} \frac{1}{(n+1)!} (\phi^{\wedge})^{n} \rho \\ \mathbf{0}^{T} & 1 \end{bmatrix}$$
$$\stackrel{\Delta}{=} \begin{bmatrix} \mathbf{R} & \mathbf{J}\rho \\ \mathbf{0}^{T} & 1 \end{bmatrix} = \mathbf{T}.$$

 The rotation part is just a SO(3), but the translation part has a Jacobian matrix: (left as an assignment)

$$J = \frac{\sin\theta}{\theta}I + \left(1 - \frac{\sin\theta}{\theta}\right)aa^{T} + \frac{1 - \cos\theta}{\theta}a^{\wedge}.$$

- Next question
 - We still don't have plus operation for Lie group
 - Then we can't define derivatives
- Solution
 - Take advantage of the plus in the Lie algebra, and convert it back to Lie group
- A primal question:
 - Plus in Lie algebra is equal to multiplication in Lie group?

$$\exp\left(\phi_{1}^{\wedge}\right)\exp\left(\phi_{2}^{\wedge}\right)=\exp\left(\left(\phi_{1}+\phi_{2}\right)^{\wedge}\right).$$

- Unfortunately, this does not work for matrices
- Baker-Campbell-Hausdorff formula gives the full version of this multiplication:

$$\ln(\exp(\mathbf{A})\exp(\mathbf{B})) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sum_{\substack{r_i+s_i>0,\\1\leqslant i\leqslant n}} \frac{(\sum_{i=1}^n (r_i+s_i))^{-1}}{\prod_{i=1}^n r_i!s_i!} [\mathbf{A}^{r_1} \mathbf{B}^{s_1} \mathbf{A}^{r_2} \mathbf{B}^{s_2} \cdots \mathbf{A}^{r_n} \mathbf{B}^{s_n}]$$

where

$$egin{aligned} egin{aligned} egi$$

• First part of BCH formula:

$$\ln (\exp (\mathbf{A}) \exp (\mathbf{B})) = \mathbf{A} + \mathbf{B} + \frac{1}{2} [\mathbf{A}, \mathbf{B}] + \frac{1}{12} [\mathbf{A}, [\mathbf{A}, \mathbf{B}]] - \frac{1}{12} [\mathbf{B}, [\mathbf{A}, \mathbf{B}]] + \cdots$$

 If A or B is small enough we can keep the linear item only, the BCH can be approximately written as:

$$\ln\left(\exp\left(\phi_{1}^{\wedge}\right)\exp\left(\phi_{2}^{\wedge}\right)\right)^{\vee} \approx \begin{cases} J_{l}(\phi_{2})^{-1}\phi_{1} + \phi_{2} & \text{if } \phi_{1} \text{ is small,} \\ J_{r}(\phi_{1})^{-1}\phi_{2} + \phi_{1} & \text{if } \phi_{2} \text{ is small.} \end{cases}$$

• where
$$J_l = J = \frac{\sin \theta}{\theta} I + \left(1 - \frac{\sin \theta}{\theta}\right) a a^T + \frac{1 - \cos \theta}{\theta} a^{\wedge}$$
. Left Jacobian

$$J_l^{-1} = \frac{\theta}{2} \cot \frac{\theta}{2} I + \left(1 - \frac{\theta}{2} \cot \frac{\theta}{2}\right) a a^T - \frac{\theta}{2} a^{\wedge}.$$
 Right Jacobian

 $J_r(\phi) = J_l(-\phi).$

Rewrite it (we take left multiplication as an example)

$$\exp\left(\Delta\phi^{\wedge}\right)\exp\left(\phi^{\wedge}\right) = \exp\left(\left(\phi + J_{l}^{-1}\left(\phi\right)\Delta\phi\right)^{\wedge}\right).$$

- Left multiplication in Lie group means an addition in Lie algebra with an Jacobian
- Inversely, if we do addition in Lie algebra, the in Lie group:

$$\exp\left(\left(\phi + \Delta\phi\right)^{\wedge}\right) = \exp\left(\left(J_l \Delta\phi\right)^{\wedge}\right) \exp\left(\phi^{\wedge}\right) = \exp\left(\phi^{\wedge}\right) \exp\left(\left(J_r \Delta\phi\right)^{\wedge}\right).$$

Similar in SE(3)'s case:

$$\exp\left(\Delta \boldsymbol{\xi}^{\wedge}\right) \exp\left(\boldsymbol{\xi}^{\wedge}\right) \approx \exp\left(\left(\boldsymbol{\mathcal{J}}_{l}^{-1}\Delta \boldsymbol{\xi} + \boldsymbol{\xi}\right)^{\wedge}\right),$$
$$\exp\left(\boldsymbol{\xi}^{\wedge}\right) \exp\left(\Delta \boldsymbol{\xi}^{\wedge}\right) \approx \exp\left(\left(\boldsymbol{\mathcal{J}}_{r}^{-1}\Delta \boldsymbol{\xi} + \boldsymbol{\xi}\right)^{\wedge}\right).$$

• Where:

$$\mathcal{Q}_{\ell}(\boldsymbol{\xi}) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{(n+m+2)!} (\phi^{\wedge})^{n} \rho^{\wedge} (\phi^{\wedge})^{m}$$

$$\mathcal{J}_{r}(\boldsymbol{\xi}) = \begin{bmatrix} J_{r} & Q_{r} \\ 0 & J_{r} \end{bmatrix} = \frac{1}{2} \rho^{\wedge} + \left(\frac{\phi - \sin \phi}{\phi^{3}}\right) (\phi^{\wedge} \rho^{\wedge} + \rho^{\wedge} \phi^{\wedge} + \phi^{\wedge} \phi^{\wedge})$$

$$+ \left(\frac{\phi^{2} + 2\cos \phi - 2}{2\phi^{4}}\right) (\phi^{\wedge} \phi^{\wedge} \rho^{\wedge} + \rho^{\wedge} \phi^{\wedge} \phi^{\wedge} - 3\phi^{\wedge} \rho^{\wedge} \phi^{\wedge})$$

$$+ \left(\frac{2\phi - 3\sin \phi + \phi \cos \phi}{2\phi^{5}}\right) (\phi^{\wedge} \rho^{\wedge} \phi^{\wedge} + \phi^{\wedge} \phi^{\wedge} \rho^{\wedge} \phi^{\wedge})$$

$$Q_{r}(\boldsymbol{\xi}) = Q_{\ell}(-\boldsymbol{\xi}) = CQ_{\ell}(\boldsymbol{\xi}) + (J_{\ell}\rho)^{\wedge} CJ_{\ell}$$

- With BCH formula, we can define the derivate of a function of a rotation or transform matrix
- Example: rotating a point *p*
- We want to know the derivative:

 $rac{\partial\left(oldsymbol{R}oldsymbol{p}
ight) }{\partialoldsymbol{R}}.$

- We have two solutions:
 - Add a small item in the Lie algebra, and set its limit to zero (Derivative model)
 - (Left) Multiply a small item in the Lie group, and set its Lie algebra's limit to zero (Disturb model)

Derivative model:

$$\begin{split} \frac{\partial \left(\exp\left(\phi^{\wedge}\right)p\right)}{\partial \phi} &= \lim_{\delta \phi \to 0} \frac{\exp\left(\left(\phi + \delta \phi\right)^{\wedge}\right)p - \exp\left(\phi^{\wedge}\right)p}{\delta \phi} \\ &= \lim_{\delta \phi \to 0} \frac{\exp\left(\left(J_{l}\delta \phi\right)^{\wedge}\right)\exp\left(\phi^{\wedge}\right)p - \exp\left(\phi^{\wedge}\right)p}{\delta \phi} \\ &\approx \lim_{\delta \phi \to 0} \frac{\left(I + \left(J_{l}\delta \phi\right)^{\wedge}\right)\exp\left(\phi^{\wedge}\right)p - \exp\left(\phi^{\wedge}\right)p}{\delta \phi} \\ &= \lim_{\delta \phi \to 0} \frac{\left(J_{l}\delta \phi\right)^{\wedge}\exp\left(\phi^{\wedge}\right)p}{\delta \phi} \\ &= \lim_{\delta \phi \to 0} \frac{-\left(\exp\left(\phi^{\wedge}\right)p\right)^{\wedge}J_{l}\delta \phi}{\delta \phi} = -\left(Rp\right)^{\wedge}J_{l}. \end{split}$$

Disturb model:

$$\begin{split} \frac{\partial \left(\boldsymbol{R} \boldsymbol{p} \right)}{\partial \varphi} &= \lim_{\varphi \to 0} \frac{\exp \left(\varphi^{\wedge} \right) \exp \left(\phi^{\wedge} \right) \boldsymbol{p} - \exp \left(\phi^{\wedge} \right) \boldsymbol{p}}{\varphi} \\ &\approx \lim_{\varphi \to 0} \frac{\left(1 + \varphi^{\wedge} \right) \exp \left(\phi^{\wedge} \right) \boldsymbol{p} - \exp \left(\phi^{\wedge} \right) \boldsymbol{p}}{\varphi} \\ &= \lim_{\varphi \to 0} \frac{\varphi^{\wedge} \boldsymbol{R} \boldsymbol{p}}{\varphi} = \lim_{\varphi \to 0} \frac{-\left(\boldsymbol{R} \boldsymbol{p} \right)^{\wedge} \varphi}{\varphi} = -\left(\boldsymbol{R} \boldsymbol{p} \right)^{\wedge}. \end{split}$$

- More simple and clear
- In some literature we use operator ⊕ to denote this disturb model

$$\Delta R \oplus R = \exp(\delta \phi^{\wedge})R$$

• Disturb model in SE(3):

$$\begin{split} \frac{\partial\left(Tp\right)}{\partial\delta\xi} &= \lim_{\delta\xi\to0} \frac{\exp\left(\delta\xi^{\wedge}\right)\exp\left(\xi^{\wedge}\right)p - \exp\left(\xi^{\wedge}\right)p}{\delta\xi} \\ &\approx \lim_{\delta\xi\to0} \frac{\left(I + \delta\xi^{\wedge}\right)\exp\left(\xi^{\wedge}\right)p - \exp\left(\xi^{\wedge}\right)p}{\delta\xi} \\ &= \lim_{\delta\xi\to0} \frac{\delta\xi^{\wedge}\exp\left(\xi^{\wedge}\right)p}{\delta\xi} \\ &= \lim_{\delta\xi\to0} \frac{\left[\begin{array}{c}\delta\phi^{\wedge} \ \delta\rho\\ 0^{T} \ 0\end{array}\right]\left[\begin{array}{c}Rp + t\\ 1\end{array}\right]}{\delta\xi} \\ &= \lim_{\delta\xi\to0} \frac{\left[\begin{array}{c}\delta\phi^{\wedge}\left(Rp + t\right) + \delta\rho\\ 0\end{array}\right]}{\delta\xi} \\ &= \lim_{\delta\xi\to0} \frac{\left[\begin{array}{c}\delta\phi^{\wedge}\left(Rp + t\right) + \delta\rho\\ 0\end{array}\right]}{\delta\xi} \\ &= \lim_{\delta\xi\to0} \frac{\left[\begin{array}{c}\delta\phi^{\wedge}\left(Rp + t\right) + \delta\rho\\ 0\end{array}\right]}{\delta\xi} \\ &= \left[\begin{array}{c}I\\ 0^{T} \ 0^{T}\end{array}\right] \doteq (Tp)^{\odot}. \end{split}$$

Questions?