Practical Course: Vision-based Navigation Winter Semester 2019

Lecture 1. 3D Geometry and

Lie Groups

Vladyslav Usenko, Nikolaus Demmel,

Prof. Dr. Daniel Cremers

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

1. Course contents and preliminary knowledge

- General overview of computer vision tasks

1. Course contents and preliminary knowledge

- Computer vision

Real world cameras
Image and video sequences

1. Course contents and preliminary knowledge

- What is SLAM? Simultaneous localization and mapping

Instituto Universitario de Investigación en Ingeniería de Aragón
Universidad Zaragoza

ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

Raúl Mur-Artal and Juan D. Tardós

```
raulmur@unizar.es tardos@unizar.es
```

Indoor/outdoor localization

1. Course contents and preliminary knowledge

- What is SLAM?

Direct Sparse Odometry

 Jakob Engel, ${ }^{1,2}$ Vladlen Koltun, ${ }^{2}$, Daniel Cremers ${ }^{1}$ July 2016

Dense/semi-dense reconstruction

1. Course contents and preliminary knowledge

- What is SLAM?

RGB-D dense reconstruction

1. Course contents and preliminary knowledge

- SLAM applications

Hand-held devices

1. Course contents and preliminary knowledge

- Computer vision

Harley and Zisserman, Multiple view geometry in computer vision

Tim Barfoot, State estimation for robotics

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

2. Framework of SLAM

- SLAM problem
- Fundamental problems in intelligent robots
- Where am I?
-Localization
- What is around me?
-Mapping
- Chicken and egg problem
- Localization needs accurate map
- Mapping needs accurate localization

2. Framework of SLAM

- How to do SLAM? -Sensors
- Sensor is the way to measure the outside environment
- Interoseptive sensors: accelerometer, gyroscope ...
- Exteroceptive sensors: camera, laser rangefinder, GPS ...

(a)

(b)

(c)

(d)

(f)

Some sensors must be placed in a cooperative environment, other can be directly equipped in the robot itself

2. Framework of SLAM

- Visual SLAM
- Cameras
- Monocular
- Stereo
- RGB-D

Monocular camera

RGB-D (depth) camera

Stereo camera

- Omnidirectional, Event camera, etc
- Cameras
- Cheap, rich information
- Record 2D projected image of the 3D world
- The 3D-2D projection throws away one dimension: distance

2. Framework of SLAM

- Various kinds of cameras:
- Monocular: image only, need other methods to estimate the depth
- Stereo: disparity to depth
- RGB-D: physical depth measurements

Stereo vision estimates the depth from disparity

Moving stereo: disparity can be estimated in the motion

Ambiguity in mono vision: small + close or large + far away?

2. Framework of SLAM

- SLAM framework

2. Framework of SLAM

- Visual odometry
- Motion estimation between adjacent frames
- Simplest: two-view geometry
- Method
- Feature method
- Direct method
- Backend
- Long-term trajectory and map estimation

- MAP: Maximum of a Posteri
- Filters/Graph Optimization

2. Framework of SLAM

- Loop closing
- Correct the drift in estimation
- Loop detection and correction
- Mapping
- Generate globally consistent map for navigation/planning/commu nication/visualization etc
- Grid/topological/hybrid maps
- Pointcloud/Mesh/TSDF ...

2D grid map

Point cloud maps

2D topological map

TSDF models

2. Framework of SLAM

- Mathematical representation of visual SLAM
- Assume a camera is moving in 3D space
- But measurements are taken at discrete times:

$$
\left\{\begin{array} { l l }
{ \boldsymbol { x } _ { k } = f (\boldsymbol { x } _ { k - 1 } , \boldsymbol { u } _ { k } , \boldsymbol { w } _ { k }) } \\
{ \boldsymbol { z } _ { k , j } = h (\boldsymbol { y } _ { j } , \boldsymbol { x } _ { k } , \boldsymbol { v } _ { k , j }) }
\end{array} \quad \text { Motion model } \quad \text { Observation model } \quad \left\{\begin{array}{c}
x_{k}=A_{k} x_{k-1}+B_{k} u_{k}+w_{k} \\
z_{k, j}=C_{j} y_{j}+D_{k} x_{k}+v_{k, j}
\end{array}\right.\right.
$$

Non-linear form
linear form

2. Framework of SLAM

- Questions:

$$
\begin{cases}\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) & \text { Motion model } \\ \boldsymbol{z}_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k, j}\right) & \text { Observation model }\end{cases}
$$

- How to represent state variables?
- 3D geometry, Lie group and Lie algebra
- Exact form of motion/observation model?
- Camera intrinsic and extrinsics
- How to estimate the state given measurement data?
- State estimation problem
- Filters and optimization

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

3. 3D geometry

- Point and Coordinate system
- 2D: (x, y) and angle
- 3D?

3. 3D geometry

- 3D coordinate system
- Vectors and their coordinates

Right handed

Left handed

3. 3D geometry

- Vector operations
- Addition/subtraction
- Dot product

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}^{T} \boldsymbol{b}=\sum_{i=1}^{3} a_{i} b_{i}=|\boldsymbol{a}||\boldsymbol{b}| \cos \langle\boldsymbol{a}, \boldsymbol{b}\rangle .
$$

- Cross product

$$
\begin{gathered}
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right]=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \boldsymbol{b} \triangleq \boldsymbol{a}^{\wedge} \boldsymbol{b} . \\
\text { Skew-symmetric operator }
\end{gathered}
$$

3. 3D geometry

- Questions
- Compute the coordinates in different systems?
- In SLAM:
- Fixed world frame
- Moving camera frame
- Other sensor frames

3. 3D geometry

- 3D rigid body motion can be described with rotation and translation

- Translation is just a vector addition
- How to represent rotations?

3. 3D geometry

- Rotation
- Consider coordinate system $\left(\boldsymbol{e}_{1}, e_{2}, e_{3}\right)$ is rotated and become $\left(\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right)$
- Vector \boldsymbol{a} is fixed, then how are its coordinates changed?

$$
\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right]
$$

- Left multiplied by $\left[e_{1}^{T}, e_{2}^{T}, e_{3}^{T}\right]^{T}$

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{e}_{1}^{T} \boldsymbol{e}_{1}^{\prime} & \boldsymbol{e}_{1}^{T} \boldsymbol{e}_{2}^{\prime} & \boldsymbol{e}_{1}^{T} \boldsymbol{e}_{3}^{\prime} \\
\boldsymbol{e}_{2}^{T} \boldsymbol{e}_{1}^{\prime} & \boldsymbol{e}_{2}^{T} \boldsymbol{e}_{2}^{\prime} & \boldsymbol{e}_{2}^{T} \boldsymbol{e}_{3}^{\prime} \\
\boldsymbol{e}_{3}^{T} \boldsymbol{e}_{1}^{\prime} & \boldsymbol{e}_{3}^{T} \boldsymbol{e}_{2}^{\prime} & \boldsymbol{e}_{3}^{T} \boldsymbol{e}_{3}^{\prime}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right] \triangleq \boldsymbol{R \boldsymbol { a } ^ { \prime }} \text {. } \quad \text { Rotation matrix }
$$

3. 3D geometry

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{e}_{1}^{T} e_{1}^{\prime} & e_{1}^{T} e_{2}^{\prime} & e_{1}^{T} e_{3}^{\prime} \\
\boldsymbol{e}_{2}^{T} e_{1}^{\prime} & e_{2}^{T} e_{2}^{\prime} & e_{2}^{T} e_{3}^{\prime} \\
e_{3}^{T} e_{1}^{\prime} & e_{3}^{T} e_{2}^{\prime} & e_{3}^{T} e_{3}^{\prime}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right] \triangleq \boldsymbol{R \boldsymbol { a } ^ { \prime }} .
$$

- R is rotation matrix, which satisfies:
- R is orthogonal
- $\operatorname{Det}(R)=+1$ (if $\operatorname{Det}(R)=-1$ then it's improper rotation)
- Special orthogonal group:

$$
S O(n)=\left\{\boldsymbol{R} \in \mathbb{R}^{n \times n} \mid \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}, \operatorname{det}(\boldsymbol{R})=1\right\} .
$$

- Rotation from frame 2 to 1 can be written as:

$$
\begin{aligned}
a_{1}=R_{12} a_{2} \quad \text { and vise vesa: } & a_{2}=R_{21} a_{1} \\
& R_{21}=R_{12}^{-1}=R_{12}^{T}
\end{aligned}
$$

3. 3D geometry

- Rotation plus translation:

$$
a^{\prime}=R a+t
$$

- Compounding rotation and translation:
- $\quad b=R_{1} a+t_{1}, \quad c=R_{2} b+t_{2}$.
$\boldsymbol{c}=\boldsymbol{R}_{2}\left(\boldsymbol{R}_{1} \boldsymbol{a}+\boldsymbol{t}_{1}\right)+\boldsymbol{t}_{2}$.
- Homogeneous form:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\boldsymbol{a}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{a} \\
1
\end{array}\right] \triangleq \boldsymbol{T}\left[\begin{array}{l}
\boldsymbol{a} \\
1
\end{array}\right] . \quad \tilde{\boldsymbol{b}}=\boldsymbol{T}_{1} \tilde{\boldsymbol{a}}, \tilde{\boldsymbol{c}}=\boldsymbol{T}_{2} \tilde{\boldsymbol{b}} \quad \Rightarrow \tilde{\boldsymbol{c}}=\boldsymbol{T}_{2} \boldsymbol{T}_{1} \tilde{\boldsymbol{a}} .} \\
& \text { Inverse: } \quad \boldsymbol{T}^{-1}=\left[\begin{array}{cc}
\boldsymbol{R}^{T} & -\boldsymbol{R}^{T} t \\
\mathbf{0}^{T} & 1
\end{array}\right] .
\end{aligned}
$$

3. 3D geometry

- Homogenous coordinates:

$$
\tilde{a}=\left[\begin{array}{l}
a \\
1
\end{array}\right] \quad \tilde{a}=\left[\begin{array}{c}
a \\
1
\end{array}\right]=k\left[\begin{array}{c}
a \\
1
\end{array}\right]
$$

Still keeps equal when multiplying any non-zero factors

- Transform matrix forms Special Euclidean Group

$$
S E(3)=\left\{\left.\boldsymbol{T}=\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \boldsymbol{R} \in S O(3), \boldsymbol{t} \in \mathbb{R}^{3}\right\} .
$$

3. 3D geometry

- Alternative rotation representations
- Rotation vectors
- Euler angles
- Quaternions

- Rotation vectors
- Angle + axis: θn
- Rotation angle θ

Rotation vectors

- Rotation axis n

> Only three parameters

- Rotation vector to rotation matrix: Rodrigues' formula

$$
\boldsymbol{R}=\cos \theta \boldsymbol{I}+(1-\cos \theta) \boldsymbol{n} \boldsymbol{n}^{T}+\sin \theta \boldsymbol{n}^{\wedge} .
$$

- Inverse:

$$
\begin{array}{ll}
\theta=\arccos \left(\frac{\operatorname{tr}(\boldsymbol{R})-1}{2}\right) . & \boldsymbol{R} \boldsymbol{n}=\boldsymbol{n} . \\
& 32 \\
\ln (\mathbf{R}) & =\frac{1}{2 \sin \theta}\left(\mathbf{R}-\mathbf{R}^{\top}\right)
\end{array}
$$

3. 3D geometry

- Euler angles
- Any rotation can be decomposed into three principal rotations

- However the order of axis can be defined very differently:
- Roll-pitch-yaw (in navigation) Spin-nutation-precession in mechanics

XYZ order
3-1-3 order

3. 3D geometry

- Gimbal lock
- Singularity always exist if we want to use 3 parameters to describe rotation
- Degree-of-Freedom is reduced in singular case
- In yaw-pitch-roll order, when pitch=90 degrees
normal

singular

3. 3D geometry

- Quaternions
- In 2D case, we can use (unit) complex numbers to denote rotations

$$
z=x+i y=\rho e^{i \theta}
$$

Multiply i to rotate 90 degrees

- How about 3D case?
- (Unit) Quaternions
- Extended from complex numbers
- Three imaginary and one real part:

$$
\boldsymbol{q}=q_{0}+q_{1} i+q_{2} j+q_{3} k
$$

- The imaginary parts satisfy:

$$
\left\{\begin{array}{l}
i^{2}=j^{2}=k^{2}=-1 \\
i j=k, j i=-k \\
j k=i, k j=-i \\
k i=j, i k=-j
\end{array}\right.
$$

i,j,k look like complex numbers when multiplying with themselves
And look like cross product when multiply with others

3. 3D geometry

- Ouaternions

$$
\boldsymbol{q}=q_{0}+q_{1} i+q_{2} j+q_{3} k, \quad \boldsymbol{q}=[s, \boldsymbol{v}], \quad s=q_{0} \in \mathbb{R}, \boldsymbol{v}=\left[q_{1}, q_{2}, q_{3}\right]^{T} \in \mathbb{R}^{3},
$$

- Operations

$$
\begin{aligned}
\boldsymbol{q}_{a} \pm \boldsymbol{q}_{b}= & {\left[s_{a} \pm s_{b}, \boldsymbol{v}_{a} \pm \boldsymbol{v}_{b}\right] . } & & \boldsymbol{q}_{a}^{*}=s_{a}-x_{a} i-y_{a} j-z_{a} k=\left[s_{a},-\boldsymbol{v}_{a}\right] . \\
\boldsymbol{q}_{a} \boldsymbol{q}_{b}= & s_{a} s_{b}-x_{a} x_{b}-y_{a} y_{b}-z_{a} z_{b} & & \left\|\boldsymbol{q}_{a}\right\|=\sqrt{s_{a}^{2}+x_{a}^{2}+y_{a}^{2}+z_{a}^{2} .} \\
& +\left(s_{a} x_{b}+x_{a} s_{b}+y_{a} z_{b}-z_{a} y_{b}\right) i & & \\
& +\left(s_{a} y_{b}-x_{a} z_{b}+y_{a} s_{b}+z_{a} x_{b}\right) j & & \boldsymbol{q}^{-1}=\boldsymbol{q}^{*} /\|\boldsymbol{q}\|^{2} . \\
& +\left(s_{a} z_{b}+x_{a} y_{b}-y_{b} x_{a}+z_{a} s_{b}\right) k . & & k \boldsymbol{q}=[k s, k \boldsymbol{v}] .
\end{aligned}
$$

$\boldsymbol{q}_{a} \boldsymbol{q}_{b}=\left[s_{a} s_{b}-\boldsymbol{v}_{a}^{T} \boldsymbol{v}_{b}, s_{a} \boldsymbol{v}_{b}+s_{b} \boldsymbol{v}_{a}+\boldsymbol{v}_{a} \times \boldsymbol{v}_{b}\right]$.

$$
\boldsymbol{q}_{a} \cdot \boldsymbol{q}_{b}=s_{a} s_{b}+x_{a} x_{b} i+y_{a} y_{b} j+z_{a} z_{b} k .
$$

3. 3D geometry

- From quaternions to angle-axis:

$$
\boldsymbol{q}=\left[\cos \frac{\theta}{2}, n_{x} \sin \frac{\theta}{2}, n_{y} \sin \frac{\theta}{2}, n_{z} \sin \frac{\theta}{2}\right]^{T} .
$$

- Inverse:

$$
\left\{\begin{array}{l}
\theta=2 \arccos q_{0} \\
{\left[n_{x}, n_{y}, n_{z}\right]^{T}=\left[q_{1}, q_{2}, q_{3}\right]^{T} / \sin \frac{\theta}{2}}
\end{array}\right.
$$

- Rotate a vector by quaternions:
- Vector p is rotated by q and become p^{\prime}, how to write their relationships?
- Write p as quaternion (pure imaginary): $\boldsymbol{p}=[0, x, y, z]=[0, \boldsymbol{v}]$.
- Then:

$$
\boldsymbol{p}^{\prime}=\boldsymbol{q} \boldsymbol{p} \boldsymbol{q}^{-1} . \quad \text { Also pure imaginary }
$$

Contents

- Course contents and preliminary knowledge
- Framework and mathematic form of a SLAM problem
- 3D geometry
- Lie groups

4. Lie Group and Lie Algebra

- Recall the mathematic model of SLAM

$$
\begin{cases}\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) \\ \boldsymbol{z}_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k, j}\right) & \text { Motion model } \\ \text { Observation model }\end{cases}
$$

- We use $\operatorname{SO}(3)$ and $\operatorname{SE}(3)$ to represent the pose of camera
- Let's consider optimizing some function of rotation/transform

$$
f(R) \quad \frac{d f}{d R} \quad \frac{f(R+\Delta R)-f(R)}{\Delta R}
$$

- Rotation and transform matrix don't have a plus operator!

4. Lie Group and Lie Algebra

- Group
- 3D rotation matrix forms the Special Orthogonal Group

$$
S O(3)=\left\{\boldsymbol{R} \in \mathbb{R}^{3 \times 3} \mid \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}, \operatorname{det}(\boldsymbol{R})=1\right\} .
$$

- 3D transform matrix forms the Special Euclidean Group

$$
S E(3)=\left\{\left.\boldsymbol{T}=\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \boldsymbol{R} \in S O(3), \boldsymbol{t} \in \mathbb{R}^{3}\right\} .
$$

- What is Group?

4. Lie Group and Lie Algebra

- Group
- Group is a set with an operator (A, \cdot) that satisfies the following:

1. Closure
2. Associativity

$$
\forall a_{1}, a_{2}, a_{3} \in A, \quad\left(a_{1} \cdot a_{2}\right) \cdot a_{3}=a_{1} \cdot\left(a_{2} \cdot a_{3}\right) .
$$

3. Identity $\exists a_{0} \in A, \quad$ s.t. $\quad \forall a \in A, \quad a_{0} \cdot a=a \cdot a_{0}=a$.
4. Invertibility $\quad \forall a \in A, \quad \exists a^{-1} \in A, \quad$ s.t. $\quad a \cdot a^{-1}=a_{0}$.

- Obviously,
- (SO(3), $),(S E(3), \cdot)$ are groups

4. Lie Group and Lie Algebra

- Lie Group
- Group that is smooth
- Group that is also a manifold
- "Locally looks like $R^{n "}$
- Further explanation needs knowledge from topology and differential geometry
- SO(3) and SE(3) are also Lie groups
- Lie Algebra
- Tangent space of the Lie group at identity
- SO(3)->so(3), SE(3)->se(3)

4. Lie Group and Lie Algebra

- Introducing of the Lie Algebra
- Assume a time-varying rotation matrix $R(t)$
- It satisfies: $\quad \boldsymbol{R}(t) \boldsymbol{R}(t)^{T}=\boldsymbol{I}$.
- Take derivative of time t at both sides:

$$
\dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{T}+\boldsymbol{R}(t) \dot{\boldsymbol{R}}(t)^{T}=0
$$

- Rearrange: $\quad \dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{T}=-\left(\dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{T}\right)^{T}$.

Skew-symmetric

4. Lie Group and Lie Algebra

$$
\boldsymbol{a}^{\wedge}=\boldsymbol{A}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right], \quad \boldsymbol{A}^{\vee}=\boldsymbol{a}
$$

- Denote the skew-symmetric matrix as $\phi(t)^{\wedge}$

$$
\dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{T}=-\left(\dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{T}\right)^{T} . \quad \dot{\boldsymbol{R}}(t) \boldsymbol{R}(t)^{T}=\phi(t)^{\wedge}
$$

- Put $\mathrm{R}(\mathrm{t})$ to the right side: $\quad \dot{\boldsymbol{R}}(t)=\phi(t)^{\wedge} \boldsymbol{R}(t)$
- It looks like when we take the derivative, we will get a $\phi(t)^{\wedge}$ at the left side
- Assume we are close to identity: $t_{0}=0, R(0)=I$
- And $\phi(t)^{\wedge}$ does not change: $\quad \dot{\boldsymbol{R}}(t)=\boldsymbol{\phi}\left(t_{0}\right)^{\wedge} \boldsymbol{R}(t)=\boldsymbol{\phi}_{0}^{\wedge} \boldsymbol{R}(t)$.
- With $R(0)=I$, we solve this ODE:

$$
\boldsymbol{R}(t)=\exp \left(\boldsymbol{\phi}_{0}^{\wedge} t\right)
$$

4. Lie Group and Lie Algebra

- So, if t is close to 0 , then we can always find an R given
- $\quad \phi$ is called a Lie algebra
- From a Lie algebra, if we take a Exponential Map, then it becomes a Lie group
- Questions:
- Lie algebra's definition and constraints?
- How to compute the exponential map?

4. Lie Group and Lie Algebra

- Lie algebra:
- We have a Lie algebra for each Lie group, which is a vector space (the tangent space) at the identity
- Lie algebra has a vector space V over field F together with a binary operator (Lie bracket) [,] , that satisfies:
- Closure: $\forall \boldsymbol{X}, \boldsymbol{Y} \in \mathbb{V},[\boldsymbol{X}, \boldsymbol{Y}] \in \mathbb{V}$.
- Bilinearity: for any $\forall \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \in \mathbb{V}, a, b \in \mathbb{F}$,

$$
[a \boldsymbol{X}+b \boldsymbol{Y}, \boldsymbol{Z}]=a[\boldsymbol{X}, \boldsymbol{Z}]+b[\boldsymbol{Y}, \boldsymbol{Z}], \quad[\boldsymbol{Z}, a \boldsymbol{X}+b \boldsymbol{Y}]=a[\boldsymbol{Z}, \boldsymbol{X}]+b[\boldsymbol{Z}, \boldsymbol{Y}]
$$

- Alternativity: $\forall \boldsymbol{X} \in \mathbb{V},[\boldsymbol{X}, \boldsymbol{X}]=\mathbf{0}$.
- Jacobi identity:

$$
\forall \boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z} \in \mathbb{V},[\boldsymbol{X},[\boldsymbol{Y}, \boldsymbol{Z}]]+[\boldsymbol{Z},[\boldsymbol{X}, \boldsymbol{Y}]]+[\boldsymbol{Y},[\boldsymbol{Z}, \boldsymbol{X}]]=\mathbf{0} .
$$

4. Lie Group and Lie Algebra

- Example: $\left(R^{3}, R, \times\right)$ is a Lie algebra
- Lie algebra so(3): $\mathfrak{s o}(3)=\left\{\phi \in \mathbb{R}^{3}, \boldsymbol{\Phi}=\phi^{\wedge} \in \mathbb{R}^{3 \times 3}\right\}$.
- where

$$
\Phi=\phi^{\wedge}=\left[\begin{array}{ccc}
0 & -\phi_{3} & \phi_{2} \\
\phi_{3} & 0 & -\phi_{1} \\
-\phi_{2} & \phi_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

- And the Lie bracket is: $\left[\phi_{1}, \phi_{2}\right]=\left(\Phi_{1} \Phi_{2}-\Phi_{2} \Phi_{1}\right)^{\vee}$.

4. Lie Group and Lie Algebra

- Similarly, for SE(3) we also have se(3):

$$
\mathfrak{s c}(3)=\left\{\boldsymbol{\xi}=\left[\begin{array}{l}
\rho \\
\phi
\end{array}\right] \in \mathbb{R}^{6}, \boldsymbol{\rho} \in \mathbb{R}^{3}, \phi \in \mathfrak{s o}(3), \boldsymbol{\xi}^{\wedge}=\left[\begin{array}{cc}
\phi^{\wedge} & \rho \\
0^{T} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4}\right\} .
$$

- Where

$$
\xi^{\wedge}=\left[\begin{array}{ll}
\phi^{\wedge} & \rho \\
0^{T} & 0
\end{array}\right] \in \mathbb{R}^{4 \times 4} .
$$

and Lie bracket is:

$$
\left[\xi_{1}, \xi_{2}\right]=\left(\xi_{1}^{\wedge} \xi_{2}^{\wedge}-\xi_{2}^{\wedge} \xi_{1}^{\wedge}\right)^{\vee} .
$$

NOTE in se(3) this operator is not a skew-symmetric matrix, but we still keeps its form

- Note:
- The definition of se(3) may be different in literature
- Vector or matrix are both ok to define a lie algebra

4. Lie Group and Lie Algebra

- Exponential map
- Operator from Lie algebra to Lie group: $R=\exp \left(\phi^{\wedge}\right)$
- Here ϕ^{\wedge} is a 3×3 matrix so this exponential map is a matrix operator
- Take Taylor expansion:

$$
\exp \left(\phi^{\wedge}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\phi^{\wedge}\right)^{n} .
$$

- Directly computing this Taylor expansion is intractable

4. Lie Group and Lie Algebra

- Take the length and direction of ϕ, then $\phi=\theta a$
- For a unit-length vector, we have:

$$
\begin{aligned}
& a^{\wedge} a^{\wedge}=a a^{T}-I, \\
& a^{\wedge} a^{\wedge} a^{\wedge}=-a^{\wedge}
\end{aligned}
$$

This will be useful when handling the high-order Taylor expansion items

4. Lie Group and Lie Algebra

- Compute the Taylor expansion:

$$
\begin{aligned}
\exp \left(\boldsymbol{\phi}^{\wedge}\right) & =\exp \left(\theta \boldsymbol{a}^{\wedge}\right)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\theta \boldsymbol{a}^{\wedge}\right)^{n} \\
& =\boldsymbol{I}+\theta \boldsymbol{a}^{\wedge}+\frac{1}{2!} \theta^{2} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\frac{1}{3!} \theta^{3} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\frac{1}{4!} \theta^{4}\left(\boldsymbol{a}^{\wedge}\right)^{4}+\ldots \\
& =\boldsymbol{a} \boldsymbol{a}^{T}-\boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\theta \boldsymbol{a}^{\wedge}+\frac{1}{2!} \theta^{2} \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}-\frac{1}{3!} \theta^{3} \boldsymbol{a}^{\wedge}-\frac{1}{4!} \theta^{4}\left(\boldsymbol{a}^{\wedge}\right)^{2}+\ldots \\
& =\boldsymbol{a} \boldsymbol{a}^{T}+\left(\theta-\frac{1}{3!} \theta^{3}+\frac{1}{5!} \theta^{5}-\ldots\right) \boldsymbol{a}^{\wedge}-\left(1-\frac{1}{2!} \theta^{2}+\frac{1}{4!} \theta^{4}-\ldots\right) \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge} \\
& =\boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\boldsymbol{I}+\sin \theta \boldsymbol{a}^{\wedge}-\cos \theta \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge} \\
& =(1-\cos \theta) \boldsymbol{a}^{\wedge} \boldsymbol{a}^{\wedge}+\boldsymbol{I}+\sin \theta \boldsymbol{a}^{\wedge} \\
& =\cos \theta \boldsymbol{I}+(1-\cos \theta) \boldsymbol{a} \boldsymbol{a}^{T}+\sin \theta \boldsymbol{a}^{\wedge} .
\end{aligned}
$$

- Finally we get:

$$
\exp \left(\theta \boldsymbol{a}^{\wedge}\right)=\cos \theta \boldsymbol{I}+(1-\cos \theta) \boldsymbol{a} \boldsymbol{a}^{T}+\sin \theta \boldsymbol{a}^{\wedge}
$$

- Which is exactly the Rodrigues' formula!

4. Lie Group and Lie Algebra

- So so(3) is just the rotation vector
- Same as exponential map, we can also define logarithm map as:

$$
\phi=\ln (\boldsymbol{R})^{\vee}=\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}(\boldsymbol{R}-\boldsymbol{I})^{n+1}\right)^{\vee}
$$

- And also don't need to actually compute this stuff, we take the conversion equations from rotation matrix to rotation vector:

$$
\begin{array}{ll}
\theta=\arccos \left(\frac{\operatorname{tr}(\boldsymbol{R})-1}{2}\right) . & \boldsymbol{R} \boldsymbol{n}=\boldsymbol{n} . \\
\ln (\mathbf{R})=\frac{1}{2 \sin \theta}\left(\mathbf{R}-\mathbf{R}^{\top}\right)
\end{array}
$$

4. Lie Group and Lie Algebra

- For $\operatorname{SE}(3)$, the exponential map is:

$$
\begin{aligned}
\exp \left(\xi^{\wedge}\right) & =\left[\begin{array}{cc}
\sum_{n=0}^{\infty} \frac{1}{n!}\left(\phi^{\wedge}\right)^{n} & \sum_{n=0}^{\infty} \frac{1}{(n+1)!}\left(\phi^{\wedge}\right)^{n} \rho \\
\mathbf{0}^{T} & 1
\end{array}\right] \\
& \triangleq\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{J} \boldsymbol{\rho} \\
\mathbf{0}^{T} & 1
\end{array}\right]=\boldsymbol{T} .
\end{aligned}
$$

- The rotation part is just a $\mathrm{SO}(3)$, but the translation part has a Jacobian matrix: (left as an assignment)

$$
\boldsymbol{J}=\frac{\sin \theta}{\theta} \boldsymbol{I}+\left(1-\frac{\sin \theta}{\theta}\right) \boldsymbol{a} \boldsymbol{a}^{T}+\frac{1-\cos \theta}{\theta} \boldsymbol{a}^{\wedge} .
$$

4. Lie Group and Lie Algebra

Lie group
$S O(3)$
$R \in \mathrm{R}^{3 \times 3}$
$R R^{T}=I$
$\operatorname{det}(R)=1$

Rotation matrix

Transform matrix
Lie group
$S E(3)$
$T \in \mathrm{R}^{4 \times 4}$
$T=\left[\begin{array}{rr}R & t \\ 0^{T} & 1\end{array}\right]$

$$
\begin{aligned}
& \exp \left(\xi^{\wedge}\right)=\left[\begin{array}{cc}
\exp \left(\phi^{\wedge}\right) & J \rho \\
0^{T} & 1
\end{array}\right] \\
& J=\frac{\sin \theta}{\theta} I+\left(1-\frac{\sin \theta}{\theta}\right) a a^{T}+\frac{1-\cos \theta}{\theta} a^{\wedge} \quad \text { Exponential }
\end{aligned}
$$

$$
\begin{gathered}
\text { Lie algebra } \\
\mathfrak{s e}(3) \\
\xi=\left[\begin{array}{l}
\rho \\
\phi
\end{array}\right] \in \mathrm{R}^{6} \\
\xi^{\wedge}=\left[\begin{array}{ll}
\phi^{\wedge} & \rho \\
0^{T} & 0
\end{array}\right]
\end{gathered}
$$

4. Lie Group and Lie Algebra

- Next question
- We still don't have plus operation for Lie group
- Then we can't define derivatives
- Solution
- Take advantage of the plus in the Lie algebra, and convert it back to Lie group
- A primal question:
- Plus in Lie algebra is equal to multiplication in Lie group?

$$
\exp \left(\phi_{1}^{\wedge}\right) \exp \left(\phi_{2}^{\wedge}\right)=\exp \left(\left(\phi_{1}+\phi_{2}\right)^{\wedge}\right)
$$

4. Lie Group and Lie Algebra

- Unfortunately, this does not work for matrices
- Baker-Campbell-Hausdorff formula gives the full version of this multiplication:

$$
\begin{aligned}
& \ln (\exp (\boldsymbol{A}) \exp (\boldsymbol{B})) \\
& \quad=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sum_{\substack{r_{i}+s_{i}>0, 1 \leqslant i \leqslant n}} \frac{\left(\sum_{i=1}^{n}\left(r_{i}+s_{i}\right)\right)^{-1}}{\prod_{i=1}^{n} r_{i}!s_{i}!}\left[\boldsymbol{A}^{r_{1}} \boldsymbol{B}^{s_{1}} \boldsymbol{A}^{r_{2}} \boldsymbol{B}^{s_{2}} \cdots \boldsymbol{A}^{r_{n}} \boldsymbol{B}^{s_{n}}\right]
\end{aligned}
$$

- where

$$
\begin{aligned}
& {\left[\boldsymbol{A}^{r_{1}} \boldsymbol{B}^{s_{1}} \boldsymbol{A}^{r_{2}} \boldsymbol{B}^{s_{2}} \cdots \boldsymbol{A}^{r_{n}} \boldsymbol{B}^{s_{n}}\right]}
\end{aligned}
$$

4. Lie Group and Lie Algebra

- First part of BCH formula:
$\ln (\exp (\boldsymbol{A}) \exp (\boldsymbol{B}))=\boldsymbol{A}+\boldsymbol{B}+\frac{1}{2}[\boldsymbol{A}, \boldsymbol{B}]+\frac{1}{12}[\boldsymbol{A},[\boldsymbol{A}, \boldsymbol{B}]]-\frac{1}{12}[\boldsymbol{B},[\boldsymbol{A}, \boldsymbol{B}]]+\cdots$
- If A or B is small enough we can keep the linear item only, the BCH can be approximately written as:

$$
\ln \left(\exp \left(\phi_{1}^{\wedge}\right) \exp \left(\phi_{2}^{\wedge}\right)\right)^{\vee} \approx \begin{cases}J_{l}\left(\phi_{2}\right)^{-1} \phi_{1}+\phi_{2} & \text { if } \phi_{1} \text { is small, } \\ J_{r}\left(\phi_{1}\right)^{-1} \phi_{2}+\phi_{1} & \text { if } \phi_{2} \text { is small. }\end{cases}
$$

- where

$$
\begin{array}{ll}
\boldsymbol{J}_{l}=\boldsymbol{J}=\frac{\sin \theta}{\theta} \boldsymbol{I}+\left(1-\frac{\sin \theta}{\theta}\right) \boldsymbol{a} \boldsymbol{a}^{T}+\frac{1-\cos \theta}{\theta} \boldsymbol{a}^{\wedge} . & \text { Left Jacobian } \\
\boldsymbol{J}_{l}^{-1}=\frac{\theta}{2} \cot \frac{\theta}{2} \boldsymbol{I}+\left(1-\frac{\theta}{2} \cot \frac{\theta}{2}\right) \boldsymbol{a} \boldsymbol{a}^{T}-\frac{\theta}{2} \boldsymbol{a}^{\wedge} . & \text { Right Jacobian } \\
\boldsymbol{J}_{r}(\phi)=\boldsymbol{J}_{l}(-\phi) &
\end{array}
$$

4. Lie Group and Lie Algebra

- Rewrite it (we take left multiplication as an example)

$$
\exp \left(\Delta \phi^{\wedge}\right) \exp \left(\phi^{\wedge}\right)=\exp \left(\left(\phi+J_{l}^{-1}(\phi) \Delta \phi\right)^{\wedge}\right)
$$

- Left multiplication in Lie group means an addition in Lie algebra with an Jacobian
- Inversely, if we do addition in Lie algebra, the in Lie group:

$$
\exp \left((\phi+\Delta \phi)^{\wedge}\right)=\exp \left(\left(\boldsymbol{J}_{l} \Delta \phi\right)^{\wedge}\right) \exp \left(\phi^{\wedge}\right)=\exp \left(\phi^{\wedge}\right) \exp \left(\left(\boldsymbol{J}_{r} \Delta \phi\right)^{\wedge}\right)
$$

4. Lie Group and Lie Algebra

- Similar in SE(3)'s case:

$$
\begin{aligned}
& \exp \left(\Delta \xi^{\wedge}\right) \exp \left(\xi^{\wedge}\right) \approx \exp \left(\left(\mathcal{J}_{l}^{-1} \Delta \boldsymbol{\xi}+\boldsymbol{\xi}\right)^{\wedge}\right), \\
& \exp \left(\xi^{\wedge}\right) \exp \left(\Delta \xi^{\wedge}\right) \approx \exp \left(\left(\mathcal{J}_{r}^{-1} \Delta \boldsymbol{\xi}+\boldsymbol{\xi}\right)^{\wedge}\right) .
\end{aligned}
$$

- Where:

$$
\begin{aligned}
\boldsymbol{Q}_{\ell}(\boldsymbol{\xi})= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{(n+m+2)!}\left(\boldsymbol{\phi}^{\wedge}\right)^{n} \boldsymbol{\rho}^{\wedge}\left(\boldsymbol{\phi}^{\wedge}\right)^{m} \\
=\frac{1}{2} \boldsymbol{\rho}^{\wedge} & +\left(\frac{\phi-\sin \phi}{\phi^{3}}\right)\left(\boldsymbol{\phi}^{\wedge} \boldsymbol{\rho}^{\wedge}+\boldsymbol{\rho}^{\wedge} \boldsymbol{\phi}^{\wedge}+\boldsymbol{\phi}^{\wedge} \boldsymbol{\rho}^{\wedge} \boldsymbol{\phi}^{\wedge}\right) \\
& +\left(\frac{\phi^{2}+2 \cos \phi-2}{2 \phi^{4}}\right)\left(\boldsymbol{\phi}^{\wedge} \boldsymbol{\phi}^{\wedge} \boldsymbol{\rho}^{\wedge}+\boldsymbol{\rho}^{\wedge} \boldsymbol{\phi}^{\wedge} \boldsymbol{\phi}^{\wedge}-3 \boldsymbol{\phi}^{\wedge} \boldsymbol{\rho}^{\wedge} \boldsymbol{\phi}^{\wedge}\right) \\
& +\left(\frac{2 \phi-3 \sin \phi+\phi \cos \phi}{2 \phi^{5}}\right)\left(\boldsymbol{\phi}^{\wedge} \boldsymbol{\rho}^{\wedge} \boldsymbol{\phi}^{\wedge} \boldsymbol{\phi}^{\wedge}+\boldsymbol{\phi}^{\wedge} \boldsymbol{\phi}^{\wedge} \boldsymbol{\rho}^{\wedge} \boldsymbol{\phi}^{\wedge}\right)
\end{aligned}
$$

4. Lie Group and Lie Algebra

- With BCH formula, we can define the derivate of a function of a rotation or transform matrix
- Example: rotating a point p
- We want to know the derivative: $\frac{\partial(\boldsymbol{R} \boldsymbol{p})}{\partial \boldsymbol{R}}$.
- We have two solutions:
- Add a small item in the Lie algebra, and set its limit to zero (Derivative model)
- (Left) Multiply a small item in the Lie group, and set its Lie algebra's limit to zero (Disturb model)

4. Lie Group and Lie Algebra

- Derivative model:

$$
\begin{aligned}
\frac{\partial\left(\exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}\right)}{\partial \boldsymbol{\phi}} & =\lim _{\delta \boldsymbol{\phi} \rightarrow 0} \frac{\exp \left((\boldsymbol{\phi}+\delta \boldsymbol{\phi})^{\wedge}\right) \boldsymbol{p}-\exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}}{\delta \boldsymbol{\phi}} \\
& =\lim _{\delta \phi \rightarrow 0} \frac{\exp \left(\left(\boldsymbol{J}_{l} \delta \boldsymbol{\phi}\right)^{\wedge}\right) \exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}-\exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}}{\delta \boldsymbol{\phi}} \\
& \approx \lim _{\delta \boldsymbol{\phi} \rightarrow 0} \frac{\left(\boldsymbol{I}+\left(\boldsymbol{J}_{l} \delta \boldsymbol{\phi}\right)^{\wedge}\right) \exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}-\exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}}{\delta \boldsymbol{\phi}} \\
& =\lim _{\delta \boldsymbol{\phi} \rightarrow 0} \frac{\left(\boldsymbol{J}_{l} \delta \boldsymbol{\phi}\right)^{\wedge} \exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}}{\delta \boldsymbol{\phi}} \\
& =\lim _{\delta \boldsymbol{\phi} \rightarrow 0} \frac{-\left(\exp \left(\boldsymbol{\phi}^{\wedge}\right) \boldsymbol{p}\right)^{\wedge} \boldsymbol{J}_{l} \delta \boldsymbol{\phi}}{\delta \boldsymbol{\phi}}=-(\boldsymbol{R} \boldsymbol{p})^{\wedge} \boldsymbol{J}_{l}
\end{aligned}
$$

4. Lie Group and Lie Algebra

- Disturb model:

$$
\begin{aligned}
\frac{\partial(\boldsymbol{R} \boldsymbol{p})}{\partial \boldsymbol{\varphi}} & =\lim _{\varphi \rightarrow 0} \frac{\exp \left(\boldsymbol{\varphi}^{\wedge}\right) \exp \left(\phi^{\wedge}\right) \boldsymbol{p}-\exp \left(\phi^{\wedge}\right) \boldsymbol{p}}{\varphi} \\
& \approx \lim _{\varphi \rightarrow 0} \frac{\left(1+\varphi^{\wedge}\right) \exp \left(\phi^{\wedge}\right) \boldsymbol{p}-\exp \left(\phi^{\wedge}\right) \boldsymbol{p}}{\varphi} \\
& =\lim _{\varphi \rightarrow 0} \frac{\boldsymbol{\varphi}^{\wedge} \boldsymbol{R} \boldsymbol{p}}{\varphi}=\lim _{\varphi \rightarrow 0} \frac{-(\boldsymbol{R} \boldsymbol{p})^{\wedge} \varphi}{\boldsymbol{\varphi}}=-(\boldsymbol{R} \boldsymbol{p})^{\wedge}
\end{aligned}
$$

- More simple and clear
- In some literature we use operator \oplus to denote this disturb model

$$
\Delta R \oplus R=\exp \left(\delta \phi^{\wedge}\right) R
$$

4. Lie Group and Lie Algebra

- Disturb model in $\operatorname{SE}(3)$:

$$
\begin{aligned}
\frac{\partial(\boldsymbol{T} \boldsymbol{p})}{\partial \delta \boldsymbol{\xi}} & =\lim _{\delta \boldsymbol{\xi} \rightarrow 0} \frac{\exp \left(\delta \boldsymbol{\xi}^{\wedge}\right) \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{p}-\exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{p}}{\delta \boldsymbol{\xi}} \\
& \approx \lim _{\delta \boldsymbol{\xi} \rightarrow 0} \frac{\left(\boldsymbol{I}+\delta \boldsymbol{\xi}^{\wedge}\right) \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{p}-\exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{p}}{\delta \boldsymbol{\xi}} \\
& =\lim _{\delta \boldsymbol{\xi} \rightarrow 0} \frac{\delta \boldsymbol{\xi}^{\wedge} \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{p}}{\delta \boldsymbol{\xi}} \\
& =\lim _{\delta \boldsymbol{\xi} \rightarrow 0} \frac{\left[\begin{array}{cc}
\delta \boldsymbol{\phi}^{\wedge} & \delta \boldsymbol{\rho} \\
\boldsymbol{0}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{R} \boldsymbol{p}+\boldsymbol{t} \\
1
\end{array}\right]}{\delta \boldsymbol{\xi}} \\
& =\lim _{\delta \boldsymbol{\xi} \rightarrow 0} \frac{\left[\begin{array}{c}
\delta \boldsymbol{\phi}^{\wedge}(\boldsymbol{R} \boldsymbol{p}+\boldsymbol{t})+\delta \boldsymbol{\rho} \\
0
\end{array}\right]}{\delta \boldsymbol{\xi}}=\left[\begin{array}{cc}
\boldsymbol{I} & -(\boldsymbol{R} \boldsymbol{p}+\boldsymbol{t})^{\wedge} \\
\mathbf{0}^{T} & \boldsymbol{0}^{T}
\end{array}\right] \triangleq(\boldsymbol{T} \boldsymbol{p})^{\odot} .
\end{aligned}
$$

Questions?

