# Practical Course: Vision-based Navigation Winter Semester 2019 

## Lecture 2. Camera Models and Optimization

Vladyslav Usenko, Nikolaus Demmel,

Prof. Dr. Daniel Cremers

## Contents

- Camera Intrinsic and Extrinsic
- From State Estimation to Least Squares
- Batch Least Square
- Application: Camera Calibration


## Contents

- Camera Intrinsic and Extrinsic
- From State Estimation to Least Squares
- Batch Least Square
- Application: Camera Calibration


## 1. Camera intrinsic and extrinsic

- Go back to the first page:

$$
\begin{cases}\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) \\ \boldsymbol{z}_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k, j}\right) & \text { Motion model } \\ \text { Observation model }\end{cases}
$$

- Cameras give you the images of the world
- How are these pixels projected from the 3D environment?



## 1. Camera intrinsic and extrinsic

- Pinhole camera

By similar triangles:
$\frac{Z}{f}=-\frac{X}{X^{\prime}}=-\frac{Y}{Y^{\prime}}$.
Flip to the front:

$$
\frac{Z}{f}=\frac{X}{X^{\prime}}=\frac{Y}{Y^{\prime}} .
$$

Rearrange it:

$$
\begin{aligned}
X^{\prime} & =f \frac{X}{Z} \\
Y^{\prime} & =f \frac{Y}{Z}
\end{aligned}
$$



## 1. Camera intrinsic and extrinsic

- Pinhole cameras

From image plane to pixels:

$$
\left\{\begin{array}{l}
u=\alpha X^{\prime}+c_{x} \\
v=\beta Y^{\prime}+c_{y}
\end{array}\right.
$$

Take into:

$$
\begin{aligned}
X^{\prime} & =f \frac{X}{Z} \\
Y^{\prime} & =f \frac{Y}{Z}
\end{aligned}
$$

Then we get:


$$
\left\{\begin{array}{l}
u=f_{x} \frac{X}{Z}+c_{x} \\
v=f_{y} \frac{Y}{Z}+c_{y}
\end{array}\right.
$$

## 1. Camera intrinsic and extrinsic

- Pinhole models:

$$
\left\{\begin{array}{l}
u=f_{x} \frac{X}{Z}+c_{x} \\
v=f_{y} \frac{Y}{Z}+c_{y}
\end{array} .\right.
$$

- Matrix form:
Put Z to left:

$$
\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\frac{1}{Z}\left(\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \triangleq \frac{1}{Z} \boldsymbol{K} \boldsymbol{P} . \quad\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \triangleq \boldsymbol{K} \boldsymbol{P} .
$$

- K is called as intrinsic camera matrix
- Which is fixed for each real camera
- And can be calibrated before running slam.


## 1. Camera intrinsic and extrinsic

- Distance is lost during the projection

$$
Z\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right) \triangleq \boldsymbol{K} \boldsymbol{P}
$$

Unit plane

$$
z=1
$$

## 1. Camera intrinsic and extrinsic

- There's another rotation and translation from the world to the camera

$$
Z \boldsymbol{P}_{u v}=Z\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\boldsymbol{K}\left(\boldsymbol{R} \boldsymbol{P}_{w}+\boldsymbol{t}\right)=\boldsymbol{K} \boldsymbol{T} \boldsymbol{P}_{w}
$$

- Here R,t or T is called as extrinsic
- Note we assume the homogeneous coordinates are cast to nonhomogenous coordinates automatically
- In SLAM, the extrinsic R,t is our estimate purpose


## 1. Camera intrinsic and extrinsic

- Summary
- Projection orders: world->camera->unit plane->pixels



## 1. Camera intrinsic and extrinsic

- Distortion
- Lens will cause distortion when you have a wide range lens


Wide range lens


Fisheye cameras

## 1. Camera intrinsic and extrinsic

- Distortion types: radial distortion and tangential distortion




## 1. Camera intrinsic and extrinsic Distortion

- Mathematic form

$$
\begin{array}{ll}
x_{\text {distorted }}=x\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right) & x_{\text {distorted }}=x+2 p_{1} x y+p_{2}\left(r^{2}+2 x^{2}\right) \\
y_{\text {distorted }}=y\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right) & y_{\text {distorted }}=y+p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} x y
\end{array}
$$

tangential distortion

- Put them together

$$
\begin{aligned}
& x_{\text {distorted }}=x\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right)+2 p_{1} x y+p_{2}\left(r^{2}+2 x^{2}\right) \\
& y_{\text {distorted }}=y\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right)+p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} x y
\end{aligned}
$$

- In practice, you can choose the order of distortion params


## 1. Camera intrinsic and extrinsic: (Extended) Unified Camera Models



$$
\begin{aligned}
\mathbf{i} & =\left[f_{x}, f_{y}, c_{x}, c_{y}, \alpha, \beta\right]^{T}, \alpha \in[0,1], \beta>0 \\
\pi(\mathbf{x}, \mathbf{i}) & =\left[\begin{array}{l}
f_{x} \bar{x} \overline{x d+(1-\alpha) z} \\
f_{y} \frac{y}{\alpha d+(1-\alpha) z}
\end{array}\right]+\left[\begin{array}{l}
c_{x} \\
c_{y}
\end{array}\right], \\
d & =\sqrt{\beta\left(x^{2}+y^{2}\right)+z^{2}} .
\end{aligned}
$$

## 1. Camera intrinsic and extrinsic: <br> Kannala-Brandt Model



$$
\begin{aligned}
\mathbf{i} & =\left[f_{x}, f_{y}, c_{x}, c_{y}, k_{1}, k_{2}, k_{3}, k_{4}\right]^{T} \\
\pi(\mathbf{x}, \mathbf{i}) & =\left[\begin{array}{l}
f_{x} d(\theta) \frac{x}{y} \\
f_{y} d(\theta) \frac{y}{r}
\end{array}\right]+\left[\begin{array}{l}
c_{x} \\
c_{y}
\end{array}\right], \\
r & =\sqrt{x^{2}+y^{2}}, \theta=\operatorname{atan} 2(r, z), \\
d(\theta) & =\theta+k_{1} \theta^{3}+k_{2} \theta^{5}+k_{3} \theta^{7}+k_{4} \theta^{9}
\end{aligned}
$$

## 1. Camera intrinsic and extrinsic: Double Sphere Camera Model



$$
\begin{aligned}
\pi(\mathbf{x}, \mathbf{i}) & =\left[\begin{array}{l}
f_{x} \frac{x}{\alpha d_{2}+(1-\alpha)\left(\xi d_{1}+z\right)} \\
f_{y} \frac{y}{\alpha d_{2}+(1-\alpha)\left(\xi d_{1}+z\right)}
\end{array}\right]+\left[\begin{array}{l}
c_{x} \\
c_{y}
\end{array}\right], \\
d_{1} & =\sqrt{x^{2}+y^{2}+z^{2}}, \\
d_{2} & =\sqrt{x^{2}+y^{2}+\left(\xi d_{1}+z\right)^{2}},
\end{aligned}
$$

More info:
Vladyslav Usenko, Nikolaus Demmel, and Daniel Cremers. "The Double Sphere Camera Model". In: Proc. of the Int. Conference on 3D Vision (3DV). Sept. 2018. eprint: http://arxiv.org/abs/1807.08957.

## 1. Camera intrinsic and extrinsic

- Stereo camera
- Two cameras (usually) placed horizontally

- The distance between left camera center to the right is called as baseline
- From geometric model: $\frac{z-f}{z}=\frac{b-u_{L}+u_{R}}{b}$. $\Rightarrow z=\frac{f b}{d}, \quad d=u_{L}-u_{R}$.


## 1. Camera intrinsic and extrinsic



RGB-D cameras

## 1. Camera intrinsic and extrinsic

- Images
- 2D arrays stored in computer
- Usually 0-255 (1 byte) grayscale values after quantification



## Contents

- Camera Intrinsic and Extrinsic
- From State Estimation to Least Squares
- Batch Least Square
- Application: Camera Calibration


## 2. From state estimation to least square

- Recall the motion model and observation model

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) \\
\boldsymbol{z}_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k, j}\right)
\end{array}\right.
$$

- How to estimate the unknown variables given the observation data?


## 2. Batch state estimation

- Batch approach
- Give all the measurements
- To estimate all the state variables
- State variables:

$$
\boldsymbol{x}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{M}\right\} .
$$

Observation and input:

$$
u=\left\{u_{1}, u_{2}, \cdots\right\}, z=\left\{z_{k, j}\right\}
$$

- Our purpose:

$$
P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{u})
$$

- Bayes' Rule:

Likehood Priori

$$
p(x \mid u, z)=\frac{P(z \mid x, u) p(x \mid u)}{P(z \mid u)}
$$

Posteriori

## 2. From state estimation to least square

- It is usually hard to write out the full distribution of Bayes' formula, but we can:
- MAP: Maximum A Posteriori

$$
\begin{gathered}
x_{M A P}=\underset{x}{\operatorname{argmax}} P(x \mid u, z)=\operatorname{argmax} \frac{P(z \mid x, u) P(x \mid u)}{P(z \mid u)} \\
=\operatorname{argmax} P(z \mid x) P(x \mid u) \\
\text { Drop u because } \mathrm{z} \text { is not relevant with } \mathrm{u}
\end{gathered}
$$

- "In which state it is most likely to produce such measurements"


## 2. From state estimation to least square

- From MAP to batch least square
- We assume the noise variables are independent, so that the joint pdf can be factorized:

$$
P(z \mid x)=\prod_{k=0}^{K} P\left(z_{k} \mid x_{k}\right)
$$

- Let's consider a single observation:
- Affected by white Gaussian noise:

$$
\begin{aligned}
& z_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}\right)+\boldsymbol{v}_{k, j}, \\
& v_{k, j} \sim N\left(0, Q_{k, j}\right)
\end{aligned}
$$

- The observation model gives us a conditional pdf:

$$
P\left(\boldsymbol{z}_{j, k} \mid \boldsymbol{x}_{k}, \boldsymbol{y}_{j}\right)=N\left(h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}\right), \boldsymbol{Q}_{k, j}\right) .
$$

- Then how to compute the MAP of $x, y$ given $z$ ?


## 2. From state estimation to least square

- Gaussian distribution (matrix form)

$$
P(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) .
$$

- Take minus logarithm at both sides:

$$
\begin{aligned}
-\ln (P(\boldsymbol{x}))= & \frac{1}{2} \ln \left((2 \pi)^{N} \operatorname{det}(\boldsymbol{\Sigma})\right)+\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) . \\
& \text { Constant w.r.t x } \quad \text { Mahalanobis distance (sigma-norm) }
\end{aligned}
$$

- Maximum of $P(x)$ is equivalent to minimum of $-\ln (P(x))$


## 2. From state estimation to least square

- Take this into the MAP:

Max: $P\left(\boldsymbol{z}_{j, k} \mid \boldsymbol{x}_{k}, \boldsymbol{y}_{j}\right)=N\left(h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}\right), \boldsymbol{Q}_{k, j}\right)$.
$\Longrightarrow x_{k}, y_{j}=\operatorname{argmin}\left(\left(z_{k, j}-h\left(y_{j}, x_{k}\right)\right)^{T} Q_{j, k}^{-1}\left(z_{k, j}-h\left(y_{j}, x_{k}\right)\right)\right)$
$\uparrow$
Error or residual of single observation

- We turn a MAP problem into a least square problem


## 2. From state estimation to least square

- Batch least square
- Original problem

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) \\
\boldsymbol{z}_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k, j}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \boldsymbol{e}_{v, k}=\boldsymbol{x}_{k}-f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}\right) \\
& \boldsymbol{e}_{y, j, k}=\boldsymbol{z}_{k, j}-h\left(\boldsymbol{x}_{k}, \boldsymbol{y}_{j}\right),
\end{aligned}
$$

$$
x_{M A P}=\operatorname{argmax} P(z \mid x) P(x \mid u)
$$

- Sum of the squared residuals:
$\min$

$$
J(x)=\sum_{k} e_{v, k}^{T} \boldsymbol{R}_{k}^{-1} e_{v, k}+\sum_{k} \sum_{j} e_{y, k, j}^{T} \boldsymbol{Q}_{k, j}^{-1} e_{y, k, j}
$$

## 2. From state estimation to least square

- Some notes:

$$
J(\boldsymbol{x})=\sum_{k} e_{v, k}^{T} \boldsymbol{R}_{k}^{-1} e_{v, k}+\sum_{k} \sum_{j} e_{y, k, j}^{T} \boldsymbol{Q}_{k, j}^{-1} e_{y, k, j}
$$

- Because of noise, when we take the estimated trajectory and map into the models, they won't fit perfectly
- Then we adjust our estimation to get a better estimation (minimize the error)
- The error distribution is affected by noise distribution (information matrix)
- Structure of the least square problem
- Sum of many squared errors
- The dimension of total state variable maybe high
- But single error item is easy (only related to two states in our case)
- If we use Lie group and Lie algebra, then it's a non-constrained least square


## Contents

- Camera Intrinsic and Extrinsic
- From State Estimation to Least Squares
- Batch Least Square
- Application: Camera Calibration


## 3. Batch least square

- How to solve a least square problem?
- Non-linear, discrete time, non-constrained
- Let's start from a simple example
- Consider minimizing a squared error:

$$
\min J(x)=\min \frac{1}{2}\|f(x)\|_{2}^{2}
$$

- When J is simple, just solve:

$$
\frac{d J}{d x}=0
$$

$$
x \in \mathbb{R}^{n}
$$

- And we will find the maxima/minima/saddle points



## 3. Batch least square

- When J is a complicated function:
- $\mathrm{dJ} / \mathrm{dx}=0$ is hard to solve
- We use iterative methods
- Iterative methods

1. Start from a initial estimation $x_{0}$

2. At iteration $k$, we find a incremental $\Delta x_{k}$ to make $\left\|f\left(x_{k}+\Delta x_{k}\right)\right\|_{2}^{2}$ become smaller
3. If $\Delta x_{k}$ is small enough, stop (converged)
4. If not, set $x_{k+1}=x_{k}+\Delta x_{k}$ and return to step 2 .

## 3. Batch least square

- How to find the incremental part?
- By the gradient
- Taylor expansion of the object function:

$$
\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{2}^{2} \approx\|f(\boldsymbol{x})\|_{2}^{2}+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\frac{1}{2} \Delta \boldsymbol{x}^{T} \boldsymbol{H} \Delta \boldsymbol{x} .
$$

- First order methods and second order methods
- First order: (Steepest descent)

$$
\min _{\Delta x}\|f(x)\|_{2}^{2}+J \Delta x \quad \text { Incremental will be: } \quad \Delta x^{*}=-J^{T}(x)
$$

Usually we need a step size

## 3. Batch least square

- Zig-zag in steepest descent


Other shortcomings

- Slow convergence speed
- Slow when close to the minimum


## 3. Batch least square

- Second order methods

$$
\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{2}^{2} \approx\|f(\boldsymbol{x})\|_{2}^{2}+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\frac{1}{2} \Delta \boldsymbol{x}^{T} \boldsymbol{H} \Delta \boldsymbol{x}
$$

- Solve an increment to minimize it:

$$
\Delta \boldsymbol{x}^{*}=\arg \min \|f(\boldsymbol{x})\|_{2}^{2}+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\frac{1}{2} \Delta \boldsymbol{x}^{T} \boldsymbol{H} \Delta \boldsymbol{x} .
$$

- Let the derivative to $\Delta x$ be zero, then we get:

$$
H \Delta x=-J^{T} .
$$

- This is called Newton's method


## 3. Batch least square

- Second order method converges more quickly than first order methods
- But the Hessian matrix maybe hard to compute: $H \Delta x=-\boldsymbol{J}^{T}$.
- Can we avoid the Hessian matrix and also keep second order's convergence speed?
- Gauss-Newton
- Levenberg-Marquardt


## 3. Batch least square

- Gauss-Newton
- Taylor expansion of $\mathrm{f}(\mathrm{x}): \quad f(\boldsymbol{x}+\Delta \boldsymbol{x}) \approx f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}$.
- Then the squared error becomes:

$$
\begin{aligned}
\frac{1}{2}\|f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}\|^{2} & =\frac{1}{2}(f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x})^{T}(f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}) \\
& =\frac{1}{2}\left(\|f(\boldsymbol{x})\|_{2}^{2}+2 f(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\Delta \boldsymbol{x}^{T} \boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}\right) .
\end{aligned}
$$

- Also let its derivative with $\Delta x$ be zero:

$$
\begin{gathered}
2 \boldsymbol{J}(\boldsymbol{x})^{T} f(\boldsymbol{x})+2 \boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}=\mathbf{0} . \\
\boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}=-\boldsymbol{J}(\boldsymbol{x})^{T} f(\boldsymbol{x}) . \\
\downarrow \\
H
\end{gathered}
$$

$H \Delta x=g$.

## 3. Batch least square

$$
\boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}=-\boldsymbol{J}(\boldsymbol{x})^{T} f(\boldsymbol{x})
$$

- Gauss-Newton use $J(x)^{T} J(x)$ as an approximation of the Hessian
- Therefore avoiding the computation of H in the Newton's method
- But $J(x)^{T} J(x)$ is only semi-positive definite
- H maybe singular when J^T J has null space


## 3. Batch least square

- Levernberg-Marquardt method
- Trust region approach: approximation is only valid in a region
- Evaluate if the approximation is good:

$$
\rho=\frac{f(\boldsymbol{x}+\Delta \boldsymbol{x})-f(\boldsymbol{x})}{\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}} .
$$

- If rho is large, increase the region
- If rho is small, decrease the region
- LM optimization: $\quad \min _{\Delta x_{k}} \frac{1}{2}\left\|f\left(x_{k}\right)+J\left(x_{k}\right) \Delta x_{k}\right\|^{2}$, s.t. $\left\|\Delta x_{k}\right\|^{2} \leq \mu$
- Assume the approximation is only good within a ball


## 3. Batch least square

- Trust region problem:

$$
\min _{\Delta x_{k}} \frac{1}{2}\left\|f\left(x_{k}\right)+J\left(x_{k}\right) \Delta x_{k}\right\|^{2} \text {, s.t. }\left\|\Delta x_{k}\right\|^{2} \leq \mu
$$

- Expand it just like in G-N's case, the incremental will be:

$$
\left(J\left(x_{k}\right)^{T} J\left(x_{k}\right)+\lambda I\right) \Delta x_{k}=g \quad \lambda\left(\left\|\Delta x_{k}\right\|^{2}-\mu\right)=0
$$

- This $\lambda I$ increase the semi-positive definite property of the Hessian
- Also balancing the first-order and second-order items


## 3. Batch least square

- Other methods
- Dog-leg method
- Conjugate gradient method
- Quasi-Newton's method
- Pseudo-Newton’s method
- ...
- You can find more in optimization books if you are interested
- In SLAM, we use G-N or L-M to solve camera's motion, pixel's movement, optical-flow, etc.


## 3. Batch least square

- Problem in the Practical Assignment
- Curve fitting: find best parameters a,b,c from the observation data:

Curve function: $\quad y=\exp \left(a x^{2}+b x+c\right)+w$,

- Error:

$$
e_{i}=y_{i}-\exp \left(a x_{i}^{2}+b x_{i}+c\right)
$$

- Least square problem:

$$
\begin{aligned}
& a, b, c \\
& =\operatorname{argmin} \sum_{i=1}^{N}\left\|y_{i}-\exp \left(a x_{i}^{2}+b x_{i}+c\right)\right\|^{2}
\end{aligned}
$$



## 3. Batch least square

- You are asked to solve this problem with a ceres solver (tutorial)
- Google Ceres Solver http://ceres-solver.org/


## 3. Batch least square

- Google Ceres
- An optimization library for solving least square problems
- Tutorial: http://ceres-solver.org/tutorial.html
- Define your residual class as a functor (overload the () operator)

```
struct ExponentialResidual {
    ExponentialResidual(double x, double y)
        : x_(x), y_(y) {}
    template <typename T>
    bool operator()(const T* const m, const T* const c, T* residual) const {
        residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]);
        return true;
    }
private:
    // Observations for a sample.
    const double x_;
    const double y_;
};
```


## 3. Batch least square

- Build the optimization problem:

```
double m = 0.0;
double c = 0.0;
Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
    CostFunction* cost_function =
            new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
            new ExponentialResidual(data[2 * i], data[2 * i + 1]));
    problem.AddResidualBlock(cost_function, NULL, &m, &c);
}
```

- With auto-diff, Ceres will compute the Jacobians for you


## 3. Batch least square

- Finally solve it by calling the Solve() function and get the result summary
- You can set some parameters like number of iterations, stop conditions or the linear solver type.

```
Solver::Options options;
options.max_num_iterations = 25;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;
```

Solver::Summary summary;
Solve(options, \&problem, \&summary);

## 3. Batch least square

- Summary
- In the batch estimation, we estimate all the status variable given all the measurements and input
- The batch estimation problem can be formulated into a least square problem, after solving it we get a MAP estimation
- The least square problem can be solved by iterative methods like gradient descent, Newton's method, Gauss-Newton or LevernbergMarquardt method
- The least square problem can also be represented by a graph and forms a (factor) graph optimization problem


## Contents

- Camera Intrinsic and Extrinsic
- From State Estimation to Least Squares
- Batch Least Square
- Application: Camera Calibration


## 4. Application: Camera Calibration

- Suppose we want to estimate the camera pose
- We have several observations from the projection function
- Minimizing the reprojection error:

$$
(R, t)^{*}=T^{*}=\operatorname{argmin} \frac{1}{2} \sum_{i=1}^{N}\left\|u_{i}-\pi\left(R P_{i}+t\right)\right\|_{2}^{2}
$$

- Where $\pi(\cdot)$ is the projection equation (observation model)
- Corner points are detected using Apriltags

[^0]
## 4. Application: Camera Calibration



## 4. Application: Camera Calibration



## 4. Application: Camera Calibration

- Use camera models presented here to get initial projections
- Use optimization method to find the camera poses and intrinsic parameters
- Test different models. How well do they fit the lens?


## Questions?


[^0]:    E. Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 3400-3407. IEEE, May 2011.

