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1. SLAM
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• ORB_SLAM: http://webdiis.unizar.es/~raulmur/MurMontielTardosTRO15.pdf
• ORB_SLAM2: https://arxiv.org/abs/1610.06475
• Map management
• Reusing Keyframes
• Spanning tree for optimization
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(a) System Threads and Modules. (b) Input pre-processing

Fig. 2. ORB-SLAM2 is composed of three main parallel threads: tracking, local mapping and loop closing, which can create a fourth thread to perform
full BA after a loop closure. The tracking thread pre-processes the stereo or RGB-D input so that the rest of the system operates independently of the input
sensor. Although it is not shown in this figure, ORB-SLAM2 also works with a monocular input as in [1].

builds a globally consistent sparse reconstruction. Therefore
our method is lightweight and works with standard CPUs. Our
goal is long-term and globally consistent localization instead
of building the most detailed dense reconstruction. However
from the highly accurate keyframe poses one could fuse depth
maps and get accurate reconstruction on-the-fly in a local area
or post-process the depth maps from all keyframes after a full
BA and get an accurate 3D model of the whole scene.

III. ORB-SLAM2
ORB-SLAM2 for stereo and RGB-D cameras is built on

our monocular feature-based ORB-SLAM [1], whose main
components are summarized here for reader convenience. A
general overview of the system is shown in Fig. 2. The system
has three main parallel threads: 1) the tracking to localize
the camera with every frame by finding feature matches to
the local map and minimizing the reprojection error applying
motion-only BA, 2) the local mapping to manage the local
map and optimize it, performing local BA, 3) the loop closing
to detect large loops and correct the accumulated drift by
performing a pose-graph optimization. This thread launches
a fourth thread to perform full BA after the pose-graph
optimization, to compute the optimal structure and motion
solution.

The system has embedded a Place Recognition module
based on DBoW2 [16] for relocalization, in case of tracking
failure (e.g. an occlusion) or for reinitialization in an already
mapped scene, and for loop detection. The system maintains
a covisibiliy graph [8] that links any two keyframes observing
common points and a minimum spanning tree connecting
all keyframes. These graph structures allow to retrieve local
windows of keyframes, so that tracking and local mapping
operate locally, allowing to work on large environments, and
serve as structure for the pose-graph optimization performed
when closing a loop.

The system uses the same ORB features [17] for tracking,
mapping and place recognition tasks. These features are robust

to rotation and scale and present a good invariance to camera
auto-gain and auto-exposure, and illumination changes. More-
over they are fast to extract and match allowing for real-time
operation and show good precision/recall performance in bag-
of-word place recognition [18].

In the rest of this section we present how stereo/depth
information is exploited and which elements of the system
are affected. For a detailed description of each system block,
we refer the reader to our monocular publication [1].

A. Monocular, Close Stereo and Far Stereo Keypoints

ORB-SLAM2 as a feature-based method pre-processes the
input to extract features at salient keypoint locations, as shown
in Fig. 2b. The input images are then discarded and all system
operations are based on these features, so that the system is
independent of the sensor being stereo or RGB-D. Our system
handles monocular and stereo keypoints, which are further
classified as close or far.

Stereo keypoints are defined by three coordinates xs =
(uL, vL, uR), being (uL, vL) the coordinates on the left image
and uR the horizontal coordinate in the right image. For stereo
cameras, we extract ORB in both images and for every left
ORB we search for a match in the right image. This can
be done very efficiently assuming stereo rectified images,
so that epipolar lines are horizontal. We then generate the
stereo keypoint with the coordinates of the left ORB and the
horizontal coordinate of the right match, which is subpixel
refined by patch correlation. For RGB-D cameras, we extract
ORB features on the RGB image and, as proposed by Strasdat
et al. [8], for each feature with coordinates (uL, vL) we
transform its depth value d into a virtual right coordinate:

uR = uL � fxb

d
(1)

where fx is the horizontal focal length and b is the baseline
between the structured light projector and the infrared camera,
which we approximate to 8cm for Kinect and Asus Xtion.

http://webdiis.unizar.es/~raulmur/MurMontielTardosTRO15.pdf
https://arxiv.org/abs/1610.06475


2. Photometric Bundle Adjustment
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Figure 21. Photometric noise. Effect of applying high-frequent,
non-isotropic blur to the image, simulating photometric noise
(evaluated on the TUM-monoVO dataset). The top row shows an
example image with �p = 6, the effect is clearly visible. Since
the direct approach models a photometric error, it is more robust
to this type of noise than indirect methods.

a purely local level. The second step then optimizes a geo-
metric noise model – which not surprisingly deals well with
geometric noise. In the direct approach, in turn, geometric
noise is not modeled, and thus has a much more severe ef-
fect – in fact, for �g > 1.5 there likely exists no state for
which all residuals are within the validity radius of the lin-
earization of I; thus optimization fails entirely (which can
be alleviated by using a coarser pyramid level). Note that
this result also suggests that the proposed direct model is
more susceptible to inaccurate intrinsic camera calibration
than the indirect approach – in turn, it may benefit more
from accurate, non-parametric intrinsic calibration.

Photometric Noise. For each frame, we separately gener-
ate a high-frequency random blur-map Np : ⌦ ! R2 by up-
sampling a 300⇥300 grid filled with uniformly distributed
random values in [��p, �p]2. We then perturb the original
image by adding anisotropic blur with standard deviation
Np(x) to pixel x:

I 0p(x) :=

Z

R2

�(�;Np(x)
2)I(x+ �) d�, (22)

where �(·;Np(x)2) denotes a 2D Gaussian kernel with
standard deviation Np(x). Figure 21 shows the result. We
can observe that DSO is slightly more robust to photo-
metric noise than ORB-SLAM – this is because (purely
local) keypoint matching fails for high photometric noise,
whereas a joint optimization of the photometric error better
overcomes the introduced distortions.

To summarize: While the direct approach outperforms
the indirect approach on well-calibrated data, it is ill-suited
in the presence of strong geometric noise, e.g., originating
from a rolling shutter or inaccurate intrinsic calibration. In

Figure 22. Point density. 3D point cloud and some coarse
depth maps, i.e., the most recent keyframe with all Np active
points projected into it) for Np=500 (top), Np=2000 (middle), and
Np=10000 (bottom).

practice, this makes the indirect model superior for smart-
phones or off-the-shelf webcams, since these were designed
to capture videos for human consumption – prioritizing res-
olution and light-sensitivity over geometric precision. In
turn, the direct approach offers superior performance on
data captured with dedicated cameras for machine-vision,
since these put more importance on geometric precision,
rather than capturing appealing images for human con-
sumption. Note that this can be resolved by tightly inte-
grating the rolling shutter into the model, as done, e.g., in
[19, 18, 15].

4.4. Qualitative Results
In addition to accurate camera tracking, DSO computes

3D points on all gradient-rich areas, including edges – re-
sulting in point-cloud reconstructions similar to the semi-
dense reconstructions of LSD-SLAM. The density then di-
rectly corresponds to how many points we keep in the active
window Np. Figure 22 shows some examples.

Figure 23 shows three more scenes (one from each
dataset), together with some corresponding depth maps.
Note that our approach is able to track through scenes with
very little texture, whereas indirect approaches fail. All
reconstructions shown are simply accumulated from the
odometry, without integrating loop-closures. See the sup-
plementary video for more qualitative results.

5. Conclusion
We have presented a novel direct and sparse formulation

for Structure from Motion. It combines the benefits of direct
methods (seamless ability to use & reconstruct all points
instead of only corners) with the flexibility of sparse ap-
proaches (efficient, joint optimization of all model parame-
ters). This is possible in real time by omitting the geometric

• Photometric Bundle adjustment in SFM
• Error metric similar to DSO (https://arxiv.org/pdf/1607.02565.pdf)
• Initialize and optimize additional (non-feature) points
• Possibly use vignetting and response from online calibration
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Figure 3. Photometric calibration. Top: Inverse response func-
tion G�1 and lens attenuation V of the camera used for Figure 1.
Bottom: Exposure t in milliseconds for a sequence containing an
indoor and an outdoor part. Note how it varies by a factor of more
than 500, from 0.018 to 10.5ms. Instead of treating these quanti-
ties as unknown noise sources, we explicitly account for them in
the photometric error model.

the world frame into the camera frame. Linearized pose-
increments will be expressed as Lie-algebra elements xi 2
se(3), which – with a slight abuse of notation – we directly
write as vectors xi 2 R6. We further define the com-
monly used operator � : se(3) ⇥ SE(3) ! SE(3) using a
left-multiplicative formulation, i.e.,

xi �Ti := ecxi ·Ti. (1)

2.1. Calibration

The direct approach comprehensively models the image
formation process. In addition to a geometric camera model
– which comprises the function that projects a 3D point onto
the 2D image – it is hence beneficial to also consider a pho-

tometric camera model, which comprises the function that
maps real-world energy received by a pixel on the sensor
(irradiance) to the respective intensity value. Note that for
indirect methods this is of little benefit and hence widely
ignored, as common feature extractors and descriptors are
invariant (or highly robust) to photometric variations.

2.1.1 Geometric Camera Calibration

For simplicity, we formulate our method for the well-known
pinhole camera model – radial distortion is removed in a
preprocessing step. While for wide-angle cameras this does
reduce the field of view, it allows comparison across meth-
ods that only implement a limited choice of camera mod-
els. Throughout this paper, we will denote projection by
⇧c : R3 ! ⌦ and back-projection with ⇧�1

c : ⌦⇥R ! R3,
where c denotes the intrinsic camera parameters (for the
pinhole model these are the focal length and the principal
point). Note that analogously to [2], our approach can be

Figure 4. Residual pattern. Pattern Np used for energy compu-
tation. The bottom-right pixel is omitted to enable SSE-optimized
processing. Note that since we have 1 unknown per point (its in-
verse depth), and do not use a regularizer, we require |Np| > 1
in order for all model parameters to be well-constrained when op-
timizing over only two frames. Figure 19 shows an evaluation of
how this pattern affects tracking accuracy.

extended to other (invertible) camera models, although this
does increase computational demands.

2.1.2 Photometric Camera Calibration

We use the image formation model used in [8], which ac-
counts for a non-linear response function G : R ! [0, 255],
as well as lens attenuation (vignetting) V : ⌦ ! [0, 1]. Fig-
ure 3 shows an example calibration from the TUM monoVO
dataset. The combined model is then given by

Ii(x) = G
�
tiV (x)Bi(x)

�
, (2)

where Bi and Ii are the irradiance and the observed pixel
intensity in frame i, and ti is the exposure time. The model
is applied by photometrically correcting each video frame
as very first step, by computing

I 0i(x) := tiBi(x) =
G�1(Ii(x))

V (x)
. (3)

In the remainder of this paper, Ii will always refer to the
photometrically corrected image I 0i , except where otherwise
stated.

2.2. Model Formulation
We define the photometric error of a point p 2 ⌦i

in reference frame Ii, observed in a target frame Ij , as
the weighted SSD over a small neighborhood of pixels.
Our experiments have shown that 8 pixels, arranged in a
slightly spread pattern (see Figure 4) give a good trade-off
between computations required for evaluation, robustness
to motion blur, and providing sufficient information. Note
that in terms of the contained information, evaluating the
SSD over such a small neighborhood of pixels is similar
to adding first- and second-order irradiance derivative con-
stancy terms (in addition to irradiance constancy) for the
central pixel. Let

Epj :=
X

p2Np

wp

����(Ij [p
0]�bj)�

tjeaj

tieai

�
Ii[p]�bi

�����
�

,

(4)

https://arxiv.org/pdf/1607.02565.pdf


3. Indirect Visual Odometry with Optical Flow

§ Sparse optical flow as alternative to feature matching
§ Possible extensions:

§ patch similarity norms
§ Keyframing, local optimization
§ Different image warping strategies
§ Implement Gauss-Newton (or LM) manually

§ Visual-Inertial Mapping with Non-Linear Factor Recovery (V. Usenko, N. Demmel, D. Schubert, J. Stueckler and D. Cremers), In 
arXiv:1904.06504, 2019.
https://arxiv.org/pdf/1904.06504

§ Equivalence and efficiency of image alignment algorithms (Baker, Simon, and Iain Matthews), In IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition. Vol. 1. IEEE Computer Society; 1999, 2001. 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.20&rep=rep1&type=pdf
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https://arxiv.org/pdf/1904.06504
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.20&rep=rep1&type=pdf


4. Global SfM with Motion Averaging

§ Goal: Implement global SfM pipeline using Motion Averaging
(as opposed to the incremental pipeline from sheet 4)

§ Approach:
§ Estimate relative rotation between pairs of cameras
§ Solve for global camera orientations
§ Given the global orientations, estimate global translations
§ Triangulate structure

§ Chatterjee, Avishek, and Venu Madhav Govindu. "Efficient and robust large-scale rotation averaging." Proceedings of the IEEE 
International Conference on Computer Vision. 2013. [pdf]

§ Wilson, Kyle, and Noah Snavely. "Robust global translations with 1dsfm." European Conference on Computer Vision. Springer, 
Cham, 2014. [pdf]

§ Zhu, Siyu, et al. "Very large-scale global sfm by distributed motion averaging." Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition. 2018. [pdf]
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https://www.cv-foundation.org/openaccess/content_iccv_2013/papers/Chatterjee_Efficient_and_Robust_2013_ICCV_paper.pdf
http://www.cs.cornell.edu/projects/1dsfm/docs/1DSfM_ECCV14.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_Very_Large-Scale_Global_CVPR_2018_paper.pdf


5. Relative Map Formulation for SLAM
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• Change the map formulation to the relative one
• Parameters are relative poses between keyframes
• All points are defined relative to some frame

• Extend either SfM or Odometry application
• Paper: http://www.robots.ox.ac.uk/~mobile/Papers/2010IJCV_mei.pdf
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(a) Global (b) Robo-centric

(c) Global Sub-mapping (d) Relative Sub-mapping (e) Continuous relative representation (CRR)

Fig. 1 Different pose and landmark representations with m for landmarks, F for frames, T for transforms and M for sub-maps
where applicable. Dashed lines represent measurements. Landmarks are connected to their base frames by filled lines. ’?’ indicates the
difficulty in sharing information between sub-maps. In relative sub-mapping (d), sub-maps (represented by a shaded area) represent
the landmark position locally with respect to a privileged frame. In the proposed continuous relative representation (e), there is no
sub-map and any frame can be a base-frame.

(a) (b) (c)

Fig. 2 Relative representation. Triangles represent robot poses (xi) with the current pose filled in. Stars represent landmarks, m
j
i

is the ith landmark in the system represented in base-frame j. kz
j
i indicates a measurement of landmark j from frame i with base

frame k. (a) Graph representing a robot trajectory. The active region of size two contains the latest two poses. (b) Trajectory after
loop closure. The robot in x9 makes an observation of landmark m1. This provides an estimate between poses x1 and x9 represented
by the new link in the graph. The active region of size two, discovered by breadth first search in the graph, now comprises the older
poses x1 and x2 because of the added link. The link between x4 and x5 still exists but is no longer represented as we do not enforce
the composition of the transforms along cycles to be the identity. (c) Trajectory after localisation. The robot was previously connected
to x2 but the latest estimate of its position to the poses in the active region has shown a closer proximity to x3. In this case, the old
link is discarded and a new link is created, here between xn and x3.

http://www.robots.ox.ac.uk/~mobile/Papers/2010IJCV_mei.pdf

