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1 Introduction

Machine learning models have been moved to very advanced levels in terms of accuracy
with the machine learning studies in recent years. Nevertheless, they can easily be fooled by
intentionally derived samples or some natural samples. The lack of representing uncertainty
in machine learning models raises this problem, and it also causes overconfident and miscali-
brated predictions [1]. Although these problems do not seem to be very important because
they are rarely encountered, it can cause very bad results in some cases. For instance, this may
lead to death in autonomous driving [2, 3]. Misdiagnosis may cause very costly consequences
in terms of human life and finance in medical applications [2, 4], and mispredictions may
lead to huge financial losses for companies in trading and finance [2, 5].

One of the most common ways to solve this kind of uncertainty problem is to use a Bayesian
approach. Because Bayesian approaches introduce a natural probabilistic way to estimate
uncertainty in deep learning [1]. Bayesian approaches, that define a distribution on model
parameters rather than fixed model parameters, aim to form posterior predictive distribution
by marginalizing the distribution of & given model paramaters 6 over the posterior distribution
of 6 given observed data X. You can see the whole formula in Equation 1.1.

P(x|X) = [ p(|6,X)p(0 | X)do (L1)
where
_P(X|0)PO) _ P(X|0)P(O) _ P(X,0)
PO1X) = P(X)  [[P(X|0)P(0)do  [,P(X,0)de (1.2)

Posterior predictive distribution takes uncertainty about 6 into account that is why it
is desired to take advantage of it while estimating uncertainty about the decisions of the
neural networks. However, it has also some serious drawbacks. The neural networks
implemented with the Bayesian approach need a lot of modifications compared to standard
neural networks [6]. Additionally, they are highly sensitive to hyperparameter choice and
initialization of weight [1]. Even different initialization of weight can lead to convergence to
different local minima. As a result of this, researchers have started to investigate a simpler
and scalable way for uncertainty estimation without Bayesian inference. Nowadays, there
are a lot of ways to estimate uncertainty in deep learning models such as ensemble learning
based methods, post-processing methods [7] and test time data augmentation [8]. In this
report, ensemble learning based methods will be investigated and they will be compared to a




2 Ensemble Learning

classical approach which is Bayesian model averaging, and dropout-based methods which
can be also counted as ensemble learning.

2 Ensemble Learning

Ensemble learning is an approach to combining individually trained several models in
different ways to form a single model in order to make a decision collectively. It aims to make
the model more accurate and decrease the likelihood of rare cases in the model. The main
motivation of ensemble learning is that combining many simple models can lead to finding a
solution to a complex problem.

Ensemble methods commonly have two parts. The first part has multiple models that make
a prediction about output with a given data and the second part has one model or approach
which aggregates the outputs of the several decision-maker models. Ensemble learning
methods differ from each other in terms of the learning procedure and the aggregation
method. The most common methods are bagging, boosting, and stacking. In some sense, also
dropout can be classified as a kind of ensemble learning.

Bagging is also called bootstrap aggregating. It has two parts which are bootstrapping
and aggregating. Bootstrapping provides that each classifier is trained by randomly sampled
training data from a fixed set. Training data are sampled with replacement and this allows
to use of the same data for different classifier training. Each classifier focuses on a specific
aspect of the probability distribution thanks to the bootstrapping procedure. Aggregating
combines weak learners which are obtained by training after bootstrapping to provide a more
advanced combined classifier.

Unlike the parallel structure of the bagging procedure, the boosting procedure consists of
a series of classifiers. Training samples for the classifier are chosen based on the previous
classifier performance. It is determined in which data is predicted wrong before that classifier
and the next classifier focuses more on these samples for training. Thus, boosting tries to find
a new classifier that makes a better prediction on the samples which is not covered well by
previous classifiers [9].

There are two features that distinguish stacking from bagging and boosting. First, stacking
uses different learning algorithms to obtain model rather than combining models which is
obtained using same algorithm. And second, stacking uses a meta model to combine weak
learners instead of using deterministic functions. In other words, it tries to achieve better
results by using the power of machine learning in the ensemble part. Graczyk et al. showed
that stacking algorithms give better accuracy in most cases compared to bagging and boosting,
on the other hand it is the most unstable one that can cause very low accuracy in some cases




compared to other methods [10].

In the simplest sense, dropout is to deactivate some nodes randomly using Bernoulli
distribution during the training phase. Although it is generally used as an overfitting preven-
tion mechanism in the training phase, it can also be used in uncertainty estimation by enabling
it at test time. It can be used as a Bayesian approximation in neural networks [11]. Some
of the researchers claim dropout is a kind of ensemble learning. For example, Hara, Saitoh,
and Shouno reported that they regarded dropout learning as ensemble learning although
it differentiates in some aspects from ensemble learning. The researchers said that dropout
learning is performed with a different set of hidden units of the same model despite the fact
that the original ensemble learning models use an aggregation over the fixed set of hidden
units but with many models or architectures. In terms of aggregating results of different
models, they indicated that both methods use the same methodology [12].

2.1 Why Should We Consider to Use Ensemble Learning?

There are many aspects where the use of ensemble learning can be advantageous. It can be
said that ensemble learning is easier to implement and understand. It also reduces complexity
of machine learning and provides more accurate models. In some case, the parallel training
is possible as well. However, the most relevant advantage for this report is that ensemble
learning allows uncertainty representation and estimation taking advantage of Monte Carlo
sampling.

3 Uncertainty

Generally, classification models are forced to yield results within a predetermined set for
each input. Since it is usual to make point estimates for parameters in machine learning,
there is not a metric to measure whether the answers given by the model for a particular
input are random answers or logical answers [13]. However, as the studies in the field of
machine learning increase, the necessity of the capability of machine learning models to give
the answer "I do not know" has started to emerge for some specific implementation areas.
For example, the confidence level of the machine learning model that diagnoses cancer is
very important. In this case, the lack of representation of confidence may cause life-changing
consequences [13]. There are many aspects of machine learning that can create uncertainty
in predictions [13]. For example, these are noisy data that can lead to the uncertainty of
estimation, model parameter uncertainty that represents the uncertainty of the answer of the
question of which parameters should be chosen to predict well [13], and structure uncertainty
that represents the uncertainty of the answer of the question of which model should be used
to interpolate/extrapolate well [13].




There are two types of uncertainty which are epistemic uncertainty and aleatoric uncer-
tainty. The epistemic uncertainty is concerned with the uncertainty in the model’s parameters
and this is because there is not enough information about data to have good predictions [14].
Aleatoric uncertainty is concerned with the noise inherent in the observations [14]. So it can
be said that epistemic uncertainty can be associated with model uncertainty and aleatoric
uncertainty can be associated with the data uncertainty.

Yarin Gal noted that epistemic uncertainty can be reduced with an increasing number of
data points [13]. Unlike the epistemic uncertainty, Yarin Gal also showed that aleatoric uncer-
tainty can not be decreased by increasing the number of data points because the increasing
number of data points does not lead to decrease the noise inherent of the data [13].

3.1 Measuring Quality of the Predictive Uncertainty

The existence of all these uncertainty concerns which are explained above arises the
necessity to obtain predictive uncertainty. Models should not only make predictions about
incoming input but also tell the confidence level of this prediction. However, the problem is
not only to make models able to give us a predictive uncertainty but also to evaluate of quality
of the predictive uncertainty. Because measuring the quality of predictive uncertainties has
always been a difficult task since there is not any ground truth information on uncertainty [6].
Lakshminarayanan, Pritzel, and Blundell proposed to use some evaluation measures that are
obtained by considering practical applications of neural networks. They measured calibration
by proper scoring rules which are log predictive probabilities and the Brier score. Furthermore,
they visualized it using reliability diagrams that are a good way to show underconfident or
overconfident predictions. And also, they noted that the network should have high predictive
uncertainty when inferring on a dataset where it is not trained. That’s why researchers tried
to measure "if the network knows what it knows" with out of distribution examples [6].

4 Uncertainty via Ensemble Learning

The model M* which is obtained for a specific problem may seem that it fits the data
sensibly well and the parameter estimation is quite rational. It can be quite convenient to
use M* to predict results in standard statistical practice [15]. However, you can imagine that
there is another model M** that also provides reasonable estimates but it provides different
predictions for the same cases [15]. In such a case, it would be risky if the inference is made
based on only one model. Ensemble learning algorithms can be used as a solution to capture
the uncertainty due to model selection in such a case. In this chapter, some ensemble methods
to estimate uncertainty will be explained, and these methods will be compared to each other
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in terms of accuracy, computational power, and memory usage.

4.1 Bayesian Deep Learning and Bayesian Model Averaging

In the traditional deep learning methods, a single solution is obtained, which optimizes the
error in the training phase, for parameters. It causes the loss of the notion of uncertainty in
the deep neural networks. As it is mentioned in Chapter 1, Bayesian approaches introduce a
natural probabilistic way to estimate uncertainty in deep learning [1]. It defines a distribution
on model parameters rather than fixed model parameters. Thereby, it captures the uncertainty
arising from the data or the model.

Bayesian model averaging is one of the most traditional ways to represent uncertainty in
the ensemble learning sense based on Bayesian deep learning. Assume that the quantity that
is tried to inference is A. So marginalization can be used and it can be said that its posterior
distribution given data D is

K
pr(A| D) =Y pr(A| M D)pr (M| D) (4.1)
k=1
This is the weighted average of the posterior distributions. They have weights which
represents their posterior model probability where Mj, ..., Mk are the models considered.
And the posterior probability for model Mk can be written as follows

pr (D | My) pr (M)

M, | D) =
PriMel D)= S e (D | M) pr (M)

(4.2)

where
pr (D | My) = /PT(D | Ok, My) pr (6 | My) do; (4.3)

is the marginalized likelihood of model My respect to 6 where 6y is the model parameters
of M. Hoeting et al. noted that Bayesian model averaging performs more accurate predictions
compared to single model [15]. Furthermore, Dong, Xiong, and Yu showed that Bayesian
model averaging will decrease uncertainty in the prediction besides the accuracy compared to
a single model in the domain of hydrological models [16]. BMA gives us a lot of advantageous
aspects compared to the single-model selection, especially when the model uncertainty is
involved in [17]. For instance, BMA tries to prevent the overconfidence that emerges due
to ignorance of model uncertainty [17] and it tries to avoid that model is forced to make a
prediction in the all-or-nothing scheme that is used for classical deep learning methods [17].
Besides the several advantages, BMA has some disadvantages in terms of implementation.
The number of terms in the posterior distribution which is marginalized can be enormous
and it can not be tractable in some cases, and also, integrals in Equation 4.3 can be hard to
compute [15]. And even, determining of a prior distribution over the models, which is pr(Mjy),
is also a very hard problem to overcome [15]. BMA supposes that true predictive distribution
is the same kind of distribution as the hypothesis class of the prior and it tries to find a soft
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model by averaging models and obtains a single model within the hypothesis class [6]. On
the contrary, ensemble methods combine different models to have a powerful model and it
is expected that ensemble methods work better when predictive distribution is out of the
hypothesis class [6]. It is why simple and scalable methods grabbing attention in the area of
uncertainty estimation. And this leads us to ensemble learning without Bayesian approaches.

4.2 Dropout-Based Methods for Uncertainty Estimation

Although dropout is commonly used as a mechanism for preventing over-fitting in many
models in deep learning, Gal and Ghahramani showed that dropout usage in deep learning
can be also explicated as a Bayesian approximation of the Deep Gaussian process [11]. With
this justification, a basic method is obtained to have predictive uncertainty using dropout.
If the dropout is used not only in the training phase but also in the testing phase, it can
quantify the neural network uncertainty. In this chapter, some dropout-based methods will
be explained and how they can help us to attain a predictive uncertainty will be showed.

4.2.1 MC Dropout

In the normal dropout, the dropout mechanism is applied only during training time. This
situation causes the deterministic results for inputs in test time. But Gal and Ghahramani
proposed a framework for applying dropout during both training and test time so that in test
time, predictions are not deterministic anymore [11]. With this mechanism, they aimed to
achieve some information about approximate predictive distribution which is given by

1 %) = [Py | X, w) glw)dw @4
where w = {Wl-}Z-L:1 is set of random variables for a model with L layers and q(w) is

. K;
Wi = Mi . dlag ([Zi,]'] ].:1) (45)
z;j ~ Bernoulli (p;) fori=1,...,L,j=1,...,Ki4

and matrices M; as variational parameters. They proposed that to use moment-matching to
obtain the first and second moments of the predictive distribution. Because the prediction
of the input can be determined by calculating the first moment of outputs and predictive
uncertainty can be achieved by calculating the second moment of outputs. High variance
indicates the high uncertainty of the output and vice versa. They sampled T set of vectors

K;
from the Bernoulli distribution {z!,.. .,sz}thl with z! = [zf]} Ly giving {W!, .. .,WtL}tT:1

and tried the estimate first moment of predictive distribution which is

E,(yx) (¥) = —t;y (x*, Wi,...,W}) (4.6)




4 Uncertainty via Ensemble Learning

They called it MC-Dropout because it has many common points with Monte Carlo sampling,
it does the same thing in a the different way. It is also some kind of ensemble learning because
it takes different vectors to obtain different networks and just aggregates their results. And it
also obtains the second moment in the same fashion [11].

Table 4.1: Average test performances in RMSE and predictive log likelihood [11]
Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors

Datasets VI PBP  Dropout VI PBP D

Boston Housing | 4.32 £0.29 3.01 £0.18 2.97 +0.19 | -2.90 £0.07 -2.57 £0.09 -2.46 +0.06
Concrete Strength | 7.19 £0.12 5.67 +0.09 5.23 +0.12 | -3.39 £0.02 -3.16 +0.02 -3.04 +0.02
Energy Efficiency | 2.65 £0.08 1.80 +0.05 1.66 +0.04 | -2.39 +0.03 -2.04 +£0.02 -1.99 +0.02

Kin8nm 0.10 £0.00 0.10 +£0.00 0.10 £0.00 | 0.90 £0.01  0.90 +0.01  0.95 +0.01

In Table 4.1, VI stands for variational inference and PBP stands for probabilistic back-
propagation. In this table, you can see the comparison of the uncertainty quality of the
methods in terms of the average log likelihood. Researchers noted that uncertainty quality
can be determined from the predictive log-likelihood because it shows how well the model
captures the data. As you can see in Table 4.1, dropout methods outperform Bayesian
approaches [11].

4.2.2 Concrete Dropout

In the MC dropout method, dropout probability is a hyperparameter and it is necessary to
have a good parameter to achieve well-calibrated uncertainty estimates. Therefore, fine-tuning
should be done for dropout parameter. Gal, Hron an Kendall proposed a new dropout
alternative which is concrete(CONtinuos Relaxations of disCRETE random variables) dropout
and it achieves better performance and better calibrated models. They noted that using
a continuous relaxation for dropouts discrete probability brings us to the ability to make
automatic tuning of dropout probability in large models [18]. Continuous relaxation means
categorical reparameterization trick and it solves the problem that sampling from a categorical
distribution is not differentiable with respect to dropout parameter. This method proposes
that the random variable z, which is dropout random variable, can be sampled with a
reparametrization trick, which is explained below, instead of sampling directly from a discrete
distribution. Let say g is a random variable from Gumbel distribution

¢ = —log(—log(u)) with u ~ Uniform[0,1] 4.7)
then the discrete random variable can be sampled with function
z = argmax [gx + log 7ri] (4.8)

But there is still a problem. Argmax function is still not differentiable with respect to z. It can
be said that argmax function can be approximated with softmax and temperature parameter
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i—0o <1°g”+g> (4.9)
T
They proposed the sampling from the Concrete distribution with some temperature and
this sampling results in a range of [0, 1] instead of sampling from the discrete Bernoulli
distribution which generates 0 or 1. This provides multiplicative noises to add to weights [18].
In binary case, g can be calculated as log(u) and Equation 4.9 becomes a form such as

Z = sigmoid (i - (logp —log(1—p) +logu —log(1 — u))> (4.10)

where u ~ Unif(0,1).

Hereby, the gradient of the objective function can be calculated with respect to Z and
a proper dropout probability can be found to obtain a better result and calibration. Gal, Hron,
and Kendall compared concrete dropout with MC dropout using an image segmentation
example. Results showed that concrete dropout outperforms MC dropout in terms of accuracy
and calibration. But they also reported that it requires more computational power compared
to MC dropout. You can see the accuracy result in Table 4.2 and calibration result in Figure
4.1 [18].

Table 4.2: Intersection over union accuracy of the methods with MC sampling and without
MC sampling [18]

DenseNet Model Variant MC Sampling | IoU
No Dropout - 65.8
Dropout (manually-tuned p = 0.2) NO 67.1
Dropout (manually-tuned p = 0.2) YES 67.2
Concrete Dropout NO 67.2
Concrete Dropout YES 67.4

R Concrete Dropout, MSE = 00296
5
@ o

0:4 0.‘6
Probability

Figure 4.1: Reliability diagrams for methods [18]
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4.3 Ensemble in Model Domain for Uncertainty Estimation (Deep
Ensembles)

Lakshminarayanan et al. proposed a method called Deep Ensembles which is an alternative
to Bayesian neural networks and does not contain a Bayesian approach for quantifying
predictive uncertainty [6]. Besides this method is simple to implement, it is able to parallel
computation, and it requires very little hyperparameter tuning. It gives superior quality
predictive uncertainty estimations [6]. In this method, different m neural networks are trained
in a parallel way and the results of them are aggregated using the bagging methodology.
However, the entire dataset is used to train each network unlike classical bagging because
neural networks perform better with more data. Also Lakshminarayanan et al. realized that
having random initialization of the network parameters and random shuffling of the data
points is enough to have a good performance in practice [6]. The quality of the predictive
uncertainty estimation is examined in terms of out of distribution entropy and calibration
in this research. Lakshminarayanan et al. tested their proposed method on MNIST dataset
using 3-layer MLP and SVHN dataset using VGG-style convnet and results showed that the
deep ensemble outperforms MC dropout. These results can be seen in Figure 4.2. It also
showed that adversarial training is very helpful for small-sized deep ensembles but its effect
decreases as the number of networks increases[6].

5 10 15 o 5 0 15 o 5 0 15 o
Number of nats Numiber of nats Mumber of nets B

(a) MNIST dataset using 3-layer MLP

Number of ne Mumiber of nets Nusmber of nets

(b) SVHN using VGG-style convnet

Figure 4.2: Evaluating predictive uncertainty as a function of ensemble size M. [6]

Ensemble + &

ey e 2 IS W T ML

(a) MNIST-NotMNIST (b) SVHN-CIFAR10

Figure 4.3: Histogram of the predictive entropy on test example from known classes (top row)
and unknown classes (bottom row), while varying ensemble size M [6]

Lakshminarayanan et al. also tested their method on the out-of-distribution data and
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evaluated the entropy of the results. It is expected high entropy in out-of-distribution data
because it signals that the model is giving low confidence in unfamiliar data, and this is the
behavior that is desired [6]. The deep ensemble method gave higher entropy on unknown
data than MC dropout as a result of these experiments [6]. You can see the entropy histograms
in Figure 4.3

4.4 Ensemble in Weight Domain for Uncertainty Estimation

In ensemble methods in the weight domain for uncertainty representation, some approxima-
tion is usually used to fit a distribution and try to form an approximate posterior distribution
over weight vectors. Then weights are sampled from this distribution and outputs obtained
with these weights can be considered as Monte Carlo sampling from the output distribution
to represent uncertainty [1]. In this section, the Laplace approximation, one of the simplest
methods for an approximation to distribution, will be introduced firstly, and the snapshot
ensemble, which is the step into a simple and scalable approach, will be explained. Lastly,
the SWA family which is a simple and scalable approach for uncertainty representation will
be explained.

4.4.1 Laplace Approximation

Laplace approximation, in the simplest sense, tries to approximate posterior distribution
with Taylor expansion. Let say 0* is a maximum a priori estimate of 1(0). And p(6) = logh(6)
then the equation below can be written using Taylor expansion

p(6) = p(67) + (0 —67)p(67) +%(9—9*)2P’(9*) (4.11)

and it can be said that p(0*) is zero because it 8* is MAP estimation. So the equation below
will be obtained if the exponential function is applied on both sides and the function is
expanded to M-dimensional distribution.

1(0) ~ exp <p () + 5 (06" A (6~ 9*)> where A = —p(6%)
~ exp (p (6)) exp G (9—9*)TA(9—9*)> 4.12)

~ h(0")exp G 0—0T A6 — 9*))
With this equation, the posterior distribution can be approximated and uncertainty can be
expressed. One can see that like a normal distribution where h(6) ~ N'(6*, A~ 1).
4.4.2 Snapshot Ensemble

The snapshot ensembles need to be learned before going deep into the SWA family. It
is often not possible to find the global minimum with deep learning networks since there

10
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are more than one minimum point in objective function [19]. And also, some researches
showed that less sharp local minimums give better generalization results [20]. This motivation
leads us to snapshot ensembles. Huang et al. proposed a method that does not require any
additional training cost unlike traditional ensembles and train a single traditional network
to have ensembles. They referred to it as implicit ensemble learning [19]. Their approach
is developed using the non-convex nature of the neural network and escaping capability
from the local minimum of SGD. They allowed the SGD to approximate local minimums M
times instead of training M different networks. In each local minimum, they took snapshot
the weight of the network so that they obtained M networks from a single training phase.
After that, they took averages of them. They used a cyclic learning schedule to escape from
the current minima and approximate one other minima. They also noted that if there are
parallel resources, still snapshot ensemble is available during training time. In this case, K x
M networks can be obtained. K is the number of parallel resources and M is the snapshot
number. They also showed that snapshot ensembles generalize posterior distribution better
than classical ensemble methods and dropout so that it provides more accuracy and better
uncertainty representation. [19]. You can see the visualization of the snapshot ensemble
process in Figure 4.4.

5 Single Model H 7 Snapshot Ensemble :
Standard LR Schedule ﬁ 04+ Cyclic LR Schedule A :

2 VYR : 03 s

Figure 4.4: Left: Visualization of the single model with standard LR schedule. Right: Visual-
ization snapshot ensemble with cyclic learning rate schedule [19]

4.4.3 Stochastic Weight Averaging (SWA)

SWA is snapshot-based ensemble learning but it has an important different side from
snapshot learning. It suggests that it is more promising to take the average of weights and to
have one averaged weight vector instead of averaging the result of the different models [21].
So weighted average of the points traversed by SGD during training is referred to as Stochastic
Weight Averaging. The Cyclic or constant learning rate can be used in this methodology.
Izmailov et al. showed that there are a lot of advantages aspects of SWA compared to
traditional snapshot ensemble [21]. These advantages can be listed as follows.

¢ Izmailov et al. showed that it is not possible to reach the central point of the optimal sets
using SGD, it always traverses around the central point. So if snapshots are averaged, it
would be a better approximation for the central point of the optimal sets [21].

11
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¢ Although forward passes as many as the number of the models should be done during
the test with snapshot ensemble, it will be sufficient to do a single forward pass in SWA
and therefore, computational time will decrease during the test time [21].

¢ It reduces memory consumption compared to snapshot ensemble. [21].

SWA stores two different weight vectors. One of them is for conventional training of the
network, and another one is for storing the running average of the weights. Its memory
consumption is negligible considering traditional training. It only maintains one copy of
the running average of the DNNs during training. So considering the memory consumed
by other ensemble methods, twice as much memory as traditional training is not bad at all.
Also, after the training is complete, only weighted averages are needed to be kept [21]. The
formula for running average can be seen in the Equation 4.13.

WSWA * Mmodels + W (4.13)
Nmodels +1

WsWA <

However, having only fixed weights for testing is a disadvantage for uncertainty representation
and SWA should be expanded to have the ability to estimate uncertainty. This problem is
solved with the SWA-Gaussian method which is explained below.

4.4.4 SWA-Gaussian

It is aimed to approximate posterior distribution with a Gaussian that has the first moment
as SWA solution and second moment calculated using SGD iterates [1]. So that uncertainty
estimation will be able to be made by sampling from this Gaussian distribution to perform
Bayesian model averaging [1].

SWAG-Diagonal

Maddox et al. firstly considered that it would be better to start with the simple diagonal
format for covariance matrix [1]. For this purpose, they maintained the second moment for
each weight besides the first moment and they obtained a diagonal covariance matrix using
the equations below.

1 & —
0 = = )67 and Egipg = dliag (92 — B ) (4.14)
i=1

This formula gives an approximation formed by A/ (GSWA, LDjag ) to the posterior distribution.
Maddox et al. noted that it is not required to store these models on the GPU and SWAG-
Diagonal only requires a single update of the running averages of the weights per epoch.
Thereby, SWAG-Diagonal brings negotiable computational and memory complexity compared
to standard training. [1]

12
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SWAG-LR

Although the diagonal approach is generally used in the Bayesian approaches, it is actually a
very restrictive approach that ignores the correlations within weights. Maddox et al. expanded
the idea to take advantage of the flexibility of the low-rank plus diagonal covariance matrix [1].
They noted that covariance matrix of the SGD iterates can be written as

T
T =) (6 — Bswa) (6 — Bswa) ' (4.15)
i=1

but they do not have exact value of sya during training, they tried to approximate it with

L AT 1 T
DS —0;)) =——=DD 4.16

T 1 ; i) T-1 (4.16)
where D is the deviation matrix of columns D; = (6; — 6;) and 6; is the running estimate of
the parameters from the first i epochs. They only used the last K of vectors of D; to have
a low rank for the covariance matrix. These vectors correspond to the last K epoch of the
training. Then they combined this low-rank covariance with the diagonal covariance to obtain

an approximation like N (6swa, 3 - (Ediag + Ziow-rank ) ) for the posterior distribution [1].

SWA Low Rank Asymptotic Covariance Approximation (SWAG-Hessian)

Maddox et al. proposed the idea that asymptotic covariance approximation using low-
rank covariance can be done also using Hessian approximation [22]. They used a diagonal
approximation of the Hessian and then they multiplied it by low-rank covariance. This brings
the approximation

N1\ V2 1
(F () "z) " ~ diag <T+ Iﬁ) X (4.17)

The purpose of this method is to combine the benefits of SWAG (trajectory dependence), and
Laplace approximation (curvature information) [22].

0
0 7 I

Log-Likelihood
|

Figure 4.5: SWAG and Laplace approximations. Blue is true likelihood. Red is SWAG, Orange
is SWAG-Hessian, Black is Laplace [22]

As you can see in Figure 4.5, Laplace approximation is trapped by a single-mode. SWAG
captures the distribution better compared to others. And SWAG-Hessian gives a value in

13



the middle [22]. Maddox et al. showed that SWA family methods outperform dropout-
based, conventional methods and temperature scaling in terms of not only accuracy but also
the quality of the uncertainty representation. Low negative log-likelihood indicates good
calibration and good predictive uncertainty, as negative log-likelihood shows how well the
model captured distribution. Maddox et al. showed that SWAG gives the lowest negative log
likelihood in different dataset and architecture compared to conventional methods [1]. You
can see this result in Figure 4.6

WideResNet28x10 PreResNet-164 VGG-16 WideResNet28x10 PreResNet-164 VGG-16 WideResNet28x10 PreResNet-164 VGG-16 DenseNet-161 ResNet-152
FAR-100 anp:a 100 cw\:m s CIFAR-10 CIFAR-10 CIFAR-10 1055TL-10 ImageNet ImageNet
- ”. 0.90 16 t o8 e o3 ’ ’ 0.90 o ®
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Figure 4.6: Negative log likelihoods for methods. [1]

Also, Maddox et al. showed that SWAG methods are better in terms of calibration. You can
see the reliability diagrams in Figure 4.7
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Figure 4.7: Reliability diagrams for methods [1]
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Figure 4.8: In and out of sample entropy distributions for methods [1]

As it is mentioned earlier, the network, which gives a good predictive uncertainty, should
give high entropy in out-of-distribution data. Maddox et al. also examined methods on the
out-of-distribution datasets and results showed that SWA-based methods give lower entropy
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on in-class examples and higher entropy on out-of-class examples. This implies a better
quality uncertainty estimation. You can see the entropy results in Figure 4.8

5 Conclusion

To sum up, all ensemble methods which are explained in this report provide us a way
to achieve simple and scalable predictive uncertainty. But of course, each of these methods
has advantages and disadvantages over the others. These advantages and disadvantages can
be evaluated from 4 different aspects. These are memory consumption, the requirement of
computational power, the accuracy of the model, and the quality of uncertainty estimation.

First of all, all ensemble methods which are explained in this report outperform BMA
in terms of all aspects. And therefore, they will be compared among themselves. Since
it is required to train only one model in MC dropout, concrete dropout, and SWA-based
methods, they require less memory compared to BMA and Deep ensemble. But in SWA-based
methods, two copies of the weights are needed to store the first and second moment. So that
SWA-based methods require much more memory than Dropout-based methods. Furthermore,
MC dropout, concrete dropout and SWA-based methods requires less computational power
compared to others because they only need to train one model. But when dropout is used,
converging to minimum points needs more epochs. That is why SWA-based methods are
more efficient compared to dropout-based methods in terms of computational power. In
terms of the quality of uncertainty estimation researches showed that SWA-based methods
gives best results [1]. In the researches scanned while preparing this report, no comparison
was found between the deep ensemble and the concrete dropout in this respect since both
method’s research came out in the same period. But it is known that both outperform the MC
dropout method in terms of quality of uncertainty estimation [6, 18]. SWA-based methods
and deep ensembles outperform MC dropout and concrete dropout in terms of accuracy [1,
6]. Although SWA-based methods give better calibration results, deep ensemble methods can
generalize better and reach higher accuracy [1]. Also, Maddox et al. noted that if training
time and computational resources are limited and inference time is not limited, it is more
valuable to use the SWA-based method [1]. In this case, determining the needs and choosing
a method accordingly would be the most reasonable way.
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