
The Hidden Side of Deep Learning

Keesiu Wong
Technical University of Munich

Matriculation number: 03643161
keesiu.wong@tum.de

Abstract

In the recent years, deep learning research focused a lot
on architectural advances for specific use cases, often ne-
glecting other, more general techniques. This paper aims to
shed light to this ”hidden side” of deep learning, in order
to support researchers and practitioners with their develop-
ment. Therefore, multiple, promising methods are presented
for the initialization, normalization, and regularization of
deep neural networks, structured in a comprising taxonomy.
Finally, a practical guideline is provided, suggesting possi-
ble solutions for common deep learning problems.

1. Introduction
Modern deep learning models are continuously evolving,

their architectures are becoming larger, increasingly com-
plicated and more and more tailored for certain use cases.
Besides those highly specialized, structural designs of the
neural networks, there are many ways to improve the learn-
ing process and performance of those models in practice.
However, those generally applicable tactics receive signifi-
cantly less research attention compared to the architectural
design decisions and thus are less understood.

Therefore, this paper is a review to shed light on that hid-
den side of deep learning, by summarizing different ideas to
improve the efficiency and effectiveness of neural network
training, surveying those different approaches in terms of
how well and why they work, as well as suggesting which
techniques to use when.

The content is structured as follows: In Section 2, tech-
niques are discussed that aims at supporting the underlying
optimization process. Concretely, subsection 2.1 presents
the two most important initialization methods in detail,
namely Xavier and He Initialization, while section 2.2 fo-
cuses on Batch, Weight, Layer, Instance, and Group Nor-
malization. Regularization methods are covered in section
3, together with a respective taxonomy. More precisely,
subsection 3.1 deals with regularization via an additional
term to the loss function, for example L2 or L1 regulariza-

tion. In contrast, subsection 3.2 shows regularization tech-
niques via the network architecture, like Parameter Sharing,
Ensemble Methods or Dropout. Furthermore, subsection
3.3 points out how to regularize effectively via data, espe-
cially with carefully tuned data augmentation and its meta-
learning variants like AutoAugment. Finally, section 4 con-
cludes with a holistic guideline, summarizing possible so-
lutions for common problems during development of fully-
connected, convolutional and recurrent neural networks.

Consequently, this review provides three distinct re-
search contributions: firstly, a taxonomy to structure
optimization- and regularization-based strategies, secondly
an overview of the most promising initialization, normal-
ization and regularization techniques, as well as thirdly, a
practical guideline which tweak to use in which situation.

2. Optimization
Optimization techniques are an integral tool of machine

learning, and one way to enhance the training of those mod-
els are to improve the underlying optimization mechanism.
However, in deep learning second-order methods are often
not applicable, since it is too costly to evaluate the Hes-
sian. Thus, the training of neural networks often relies on
first-order, gradient-based methods like Stochastic Gradient
Descent or Adam.

Besides those two well-known and widely used optimiz-
ers, many alternatives were proposed in the past. Also, ad-
vancements like task-specific loss formulations or new opti-
mization strategies like learning rate decay were developed
to improve the optimization process within deep learning.
However, for the purpose of this paper, those topics are not
within its scope.

Rather, this section focuses on two other, often neglected
ways to ease the training of neural networks in the follow-
ing. One the one hand, good initialization strategies aim to
begin the optimization process from more promising start-
ing points, in the sense that it provides meaningful and sta-
ble gradients during back-propagation. On the other hand,
normalization techniques are also crucial to stabilize the ac-
tivations and enabling larger learning rates for fast training.
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2.1. Initialization

In deep learning, the initialization of the weights can
have a tremendous impact on the convergence behavior. In
fact, until a few years ago, it was a significant bottleneck
to the depth of neural networks. [13] showed that even for
a small, five-layer neural network with hyperbolic tangent
as activation functions, a naive, uniformly-distributed ini-
tialization of the weights wi ∼ U [− 1√

nin
, 1√

nin
], nin being

the size of the previous layer, can lead to quick saturation
of the activations, as well as the back-propagated gradients,
see Appendix A.1.

To understand the reason for these issues of vanishing
and exploding gradients, the key is to look at the variance
of a output unit y (with omitted bias for simplicity):

Var(y) = Var(

nin∑
i

wixi) (1)

=

nin∑
i

Var(wixi) (2)

=

nin∑
i

[E(wi)]
2Var(xi) + [E(xi)]

2Var(wi)

+ Var(wi)Var(xi) (3)

=

nin∑
i

Var(wi)Var(xi) (4)

= ninVar(wi)Var(xi). (5)

Here, we have assumed a mutual independence of the wi
and xi in equation (2), zero-mean of wi and xi in equation
(4) and finally identical distribution of allwi and xi in equa-
tion (5). Thus, the variance of a output unit y gets multiplied
by the number of input units nin.

However, in order to avoid saturation of the activations,
a good initialization strategy should avoid reducing or mag-
nifying the magnitudes of the variance, and rather keep the
variance of the output the same as the input. Thus, the
weight initialization should be chosen such that

∀ i, Var(wi) :=
1

nin
. (6)

Furthermore, from a back-propagation perspective, we also
want to avoid vanishing or exploding gradients. Thus, with
a similar calculation, an additional condition can be derived:

∀ i, Var(wi) :=
1

nout
, (7)

with nout being the size of the next layer. Note, that both
equations (6) and (7) cannot be fulfilled at the same time,
unless the weight matrix is quadratic.

2.1.1 Xavier Initialization

In order to compromise between these two constraints (6)
and (7), [13] proposed to rely on their harmonic mean:

Var(wi) :=
2

nin + nout
. (8)

Given that the weights are sampled from a Uniform distri-
bution, this led to their proposed, normalized initialization
method, nowadays known as Xavier or Glorot Initialization:

wi ∼ U [−
√

6√
nin + nout

,

√
6√

nin + nout
]. (9)

Computing the variance Var(wi) = 1
12 ( 2

√
6√

nin+nout
)2 =

2
nin+nout

equals the desired harmonic mean. This leads to
to much more stable and diverse activations and gradients,
see Appendix A.2. Note, that if one samples from a Nor-
mal distribution instead of a Uniform distribution, one can
directly set the variance to equation (8) to archive the same
behavior.

2.1.2 He Initialization

The derivation of the Xavier Initialization is based on the
simplification that activation functions are linear, which is
approximative in the case of hyperbolic tangent. How-
ever, modern deep learning architectures rely on highly non-
linear activation functions like the Rectified Linear Unit
(ReLU), for which this assumption is invalid. This gave rise
to the so-called He or Kaiming Initialization [18]. Here, the
variance is calculated as follows:

Var(y) = Var(

nin∑
i

wixi) (10)

=

nin∑
i

Var(wixi) (11)

= nin Var(wixi) (12)

= nin
[
[E(wi)]

2Var(xi) + [E(xi)]
2Var(wi)

+ Var(wi)Var(xi)
]

(13)

= nin
[
[E(xi)]

2Var(wi) + Var(wi)Var(xi)
]
(14)

= nin Var(wi)
[
[E(xi)]

2 + Var(xi)
]

(15)

= nin Var(wi)E(x2i ). (16)

Again, we have assumed mutual independence of thewi and
xi in equation (11), identical distribution of wi and xi in
equation (12), and zero-mean of wi in equation (14). How-
ever, in contrast to the previous case, we cannot assume zero
mean for xi due to the ReLU activation, which is why E(x2i )
cannot be reduced to Var(xi).
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Instead, the expectation is computed as

E(x2i ) =

∫ +∞

−∞
max(0, y′)2P(y′)dy′ (17)

=

∫ +∞

0

max(0, y′)2P(y′)dy′ (18)

=

∫ +∞

0

y′ 2P(y′)dy′ (19)

=
1

2

∫ +∞

−∞
y′ 2P(y′)dy′ (20)

=
1

2

∫ +∞

−∞
[y′ − E(y′)]2P(y′)dy′ (21)

=
1

2
E
[
[y′ − E(y′)]2

]
(22)

=
1

2
Var(y′), (23)

where y′ denotes the pre-activations of the previous layer.
Note, that in equation (18) we used the fact that the inte-
grand is zero for negative integration variables, in equation
(20) we assumed symmetry of P(y′) around zero, and in
equation (21) we assumed the pre-activations to be zero-
mean. Together with the previous result, this leads to:

Var(y) =
1

2
ninVar(wi)Var(y′). (24)

This can be interpreted as that taking the ReLU activa-
tion functions into account leads to killing half of the pre-
activations, resulting in halving the the variance of the acti-
vations during the forward pass from one layer to the next.

Again, to achieve stable activations, the variance needs
to be re-scaled such that the magnitudes of the variance re-
main constant (e.g. 1):

∀ i, Var(wi) :=
2

nin
. (25)

That means, in order to compensate for ReLU, the variance
of the weights only needs to be doubled compared to equa-
tion (6). Additionally, [16] showed that only a variance set
like (25) can avoid exponential growth in the length of the
activation vectors. It is even sufficient to only scale the for-
ward signal properly, since the backward signal is then auto-
matically stabilized, and vice versa [18]. The superiority of
He Initialization over Xavier Initialization for ReLU-based
architectures is also shown experimentally, see Appendix
A.2.1. Furthermore, [29] showed mathematically, that if
one takes the non-linear activation functions into consider-
ation, Xavier Initialization actually exhibits exponentially
smaller variance of the inputs with increasingly deeper lay-
ers, while He Initialization is provably stable.

2.1.3 Fixup Initialization

Fixup Initialization [64] was designed to circumvent
the need for normalization in deep Residual Networks
(ResNets) [17]. Usually, standard initialization methods
like Xavier or He initialization cannot properly account
for the skip-connections in ResNets without normalization
techniques like Batch Normalization, leading to exploding
gradients. However, Fixup Initialization proposed the fol-
lowing method to train ResNets with m layers and L resid-
ual branches:

1. Initialize the classification layer and the last layer of
each residual branch to 0.

2. Initialize every other layer using a standard method
(e.g. He Initialization), and scale only the weight lay-
ers inside residual branches by L−

1
2m−2 .

3. Add a scalar multiplier (initialized at 1) in every
branch and a scalar bias (initialized at 0) before each
convolution, linear, and element-wise activation layer.

This stabilizes the training of deep residual networks, even
for networks with 10,000 layers. Furthermore, Fixup en-
abled ResNets to achieved state-of-the-art performance in
image classification and machine translation, both without
normalization.

2.1.4 Further Initialization Alternatives

Besides the presented methods, multiple other initialization
strategies were developed in the past. A selection is pre-
sented in the following:

• LSUV (Layer-Sequential-Unit-Variance) Initialization
[34] suggests to first pre-initialize the weights with or-
thonormal matrices, and then normalizing the variance
of the outputs to one. Thus, it can be seen as a Batch
Normalization on layer output done before the start
of the training. Empirical results indicate that it out-
performs Xavier and He Initialization with maxout or
ReLU activations on image classification tasks.

• [1] improved the LSUV by introducing a active frac-
tion hyperparameter in order to control how likely it is
for a ReLU unit to produce a non-zero value.

• [26] proposed a Data-Dependent Initialization for
CNNs. The idea is to set the weights such that all units
train at a similar rate to avoid vanishing or exploding
gradients, by using either PCA or k-means. Both ap-
proaches outperforms Xavier and He Initialization on
image recognition and object detection problems.

• For RNNs with ReLU activations, [50] initializes
weights via a normalized positive-definite matrix, by
scaling an identity matrix with Gaussian noise with its
largest eigenvalue.
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2.2. Normalization

Normalization is often a crucial technique to dramati-
cally improve the training efficiency of neural networks. In
general, it follows the idea to stabilize the training by nor-
malizing the distribution of layer inputs and thus allowing
larger learning rates.

2.2.1 Batch Normalization

Batch Normalization [24] is arguably the most adopted nor-
malization method. For input mini-batch B = {x1,...,m},
learnable parameters γ, β and output {yi = BNγ,β(xi)}, it
is defined as:

µB ←
1

m

m∑
i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B + ε

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Therefore, it inserts an additional layer on top of the pre-
activations of a given layer, that normalizes them across the
mini-batch to zero-mean and unit standard deviation by sub-
tracting the mini-batch-wise mean and dividing by its mini-
batch-wise standard-deviation per feature. The strategy is
to limit the so-called Internal Covariate Shift, meaning the
”change in the distribution of of network activations due to
the change in network parameters during training” [24].

However, despite the effectiveness of Batch Normaliza-
tion in practice, the Internal Covariate Shift might not be the
main reasoning for its success. Rather, the reparametriza-
tion of the underlying optimization problem might have a
smoothing effect on the loss landscape, thus enabling more
stable gradients and faster training [45].

2.2.2 Weight Normalization

Weight Normalization [44] is an alternative to standard
Batch Normalization, where the normalization is performed
on the weights of the layers directly, instead on their pre-
activations. By reparametrizing the weight vector w of each
neuron y = φ(w · x + b) into w = g · v/‖v‖, its Euclidean
norm can be directly trained via the scalar g = ‖w‖, inde-
pendent from its direction v.

Hence, Weight Normalization results in a similar speed
up of the optimization process like Batch Normalization
while requiring 16% lower computational overhead in the
case of Convolutional Neural Networks (CNNs), because
they usually have much fewer weights than input dimen-
sions [44].

2.2.3 Layer Normalization

Layer Normalization [2] is similar to Batch Normalization.
Each pre-activation is normalized by subtracting a mean and
dividing by a standard deviation. However, in Layer Nor-
malization, those statistics are computed across the layer
and separately for each sample, instead across the mini-
batch. Concretely, given the outputs of the lth hidden layer
hl, the incoming weights of the ith hidden unitswli, and pre-
activations ali = wl>i hl, the activation of the ith unit of the
lth hidden layer is computed as hli = f( giσi

(ai − µi) + bi),
with layer-wise mean µl = 1

HΣHi=1a
l
i, layer-wise standard

deviation σl =
√

1
HΣHi=1(ali − µl)2, non-linear activation

function f , as well as the bias bi and the gain gi as learn-
able parameters.

Contrary to Batch Normalization, Layer Normalization
is also straightforward to implement for Recurrent Neural
Networks (RNNs), because it only depends on the inputs to
a layer at the current time-step. Experimental results with
a Long-Short-Term-Memory (LSTM) architecture indicate,
that Layer Normalization was not only able to converge
much faster than Batch Normalization, but also converges
to a lower validation error, see Appendix A.3.

2.2.4 Instance Normalization

Instance Normalization [53] is a proposed normalization
method for Style Transfer problems. Similarly to Layer
Normalization, it is performed over a single sample in-
stead of the whole mini-batch. However, the normalization
statistics are also calculated per channel, which removes
instance-specific contrast information. This supports the
generator network and accelerates the stylization process of
a 512x512 image from several minutes to real-time [53].

2.2.5 Group Normalization

Group Normalization [60] is another normalization method.
As the name suggests, the normalization statistics are com-
puted by partitioning each image along the channel dimen-
sion into equally-sized groups. Thus this method can be
seen as a middle ground between Layer and Instance Nor-
malization, as Figure 1 illustrates. The rationale behind his
grouping is to leverage the correlations within close chan-
nels, while allowing more flexibility than Layer Normaliza-
tion.

For image classification problems, this results in a sim-
ilar performance to Batch Normalization, and in particu-
lar outperforms Layer and Instance Normalization, see Ap-
pendix A.4. But in contrast to Batch Normalization, Group
Normalization remains stable with smaller batch sizes, see
Appendix A.5.
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Figure 1. Different normalization methods. [60]

2.2.6 Further Normalization Alternatives

Besides the presented normalization methods, many more
alternatives to standard Batch Normalization came up in
recent years, designed for different purposes. However,
many of those variants are not well-known. An exhaustive
overview would require extensive literature review and goes
beyond the scope of this paper. Nonetheless, some promis-
ing methods are pointed out in the following:

• Batch Re-Normalization [23] extends Batch Normal-
ization with an affine transformations per dimension
to work better on small or not independent identically
distributed mini-batches.

• Batch-Instance Normalization [39] interpolates Batch
and Instance Normalization via a trainable parameter,
thus enables adaptive learning on how much style in-
formation to use.

• Switchable Normalization [33] takes this idea even fur-
ther and learns a weighted average between Batch,
Layer, and Instance Normalization, resulting in better
performance at various computer vision problems.

• Spectral Normalization [35] controls the Lipschitz
constant of the discriminator function to stabilize the
training of Generative Adversarial Networks (GANs),
by normalizing the spectral norm of the weight matrix
such that satisfies a Lipschitz constraint.

• ScaleNorm [40] uses a scaled Euclidean normalization
in order to replace Layer Normalization within Trans-
former models for even faster training and an addi-
tional regularization effect.

• Reccurent Batch Normalization [6] translates standard
Batch Normalization to the LSTM architecture in both
the input-to-hidden and the hidden-to-hidden transfor-
mations.

• GraphNorm [4] is a recent normalization technique de-
signed to leverage the specific structure of Graph Neu-
ral Networks (GNNs) and yield higher efficiency and
improved generalization.

3. Regularization

Regularization is one of the most important pillars in ma-
chine learning, trying to get models to perform well also on
new, unseen input, instead of just on the training data. This
goal is what makes machine learning actually a learning
problem, and fundamentally harder than a pure optimization
problem. Concretely, regularization is defined as ”any mod-
ification we make to a learning algorithm that is intended
to reduce its generalization error but not its training error”
[15].

However, there are many regularization strategies to
achieve that, ranging from encoding specific prior know-
ledge to penalizing complexity in favor for simple models.
Furthermore, those regularization can be explicit, meaning
techniques which reduce the representational capacity of the
model, or implicit, i.e. affect the effective, achievable model
capacity [20].

In order to classify different regularization techniques,
[28] proposes a taxonomy of regularization strategies based
on the underlying empirical risk minimization problem:

argmin
w

1

|D|
∑

(xi,ti)∈D

E(fw(xi), ti) +R(. . . ).

Considering the elements of this formula, five different di-
rections of regularization strategies can be distinguished:

1. R: via a regularization term (subsection 3.1),
2. f : via the network architecture (subsection 3.2),
3. D: via data (subsection 3.3),
4. E: via the error function or
5. argmin: via the optimization itself.

Based on this taxonomy, the most important regulariza-
tion strategies based on regularization terms, network ar-
chitecture or data are presented in the following. Regu-
larization techniques based on changing of the error func-
tions (e.g. mean-squared-error or cross-entropy) or modi-
fying the optimization process (e.g. early stopping) are not
within the scope of this paper. In practice, multiple of such
regularization techniques might be combined. For a broader
overview, also confer [28].

3.1. Regularization via Regularization Term

The classical approach of explicitly regularizing a ma-
chine learning model via a regularization term stems from
its application within (Linear) Regression models. Usually,
a regularizer R is added to the loss function, in order to pe-
nalize the parameter norm and to drive the weights closer to
zero. In contrast to the error functionE, the regularizerR is
independent of the targets and rather encodes other desired
properties, thus provides inductive bias to the model [28].
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3.1.1 L2 Regularization

L2 Regularization [15], also known as Weight Decay, is the
most popular regularization term: R(w) = λ 1

2‖w‖
2
2. Here,

λ is a hyperparameter to control the strength of the regular-
ization. Note, that Weight Decay induces bias to the model
corresponding to a symmetric multivariate normal distribu-
tion prior on the weights [28]. Recent research also indi-
cates that the effectiveness of Weight Decay highly relies
on the timing of the regularization, i.e. only plays a critical
role during the initial transient period, but not for conver-
gence or the generalization afterwards [14].

3.1.2 L1 Regularization

L1 Regularization [15] uses the absolute-value norm in-
stead of the Euclidean norm: R(w) = λ‖w‖1. From
a Bayesian perspective, this is equivalent to a log-prior
term that is maximized by MAP Bayesian inference when
the prior is an isotropic Laplace distribution over w [15].
Consequently, L1 Regularization leads to a more selective
weight distribution and thus to a more sparse model.

3.1.3 Elastic Net Regularization

Elastic Net Regularization [68] was proposed to combine
the strength of L2 and L1 regularization. Especially in a
regression setting, the Elastic Net approach improves the
prediction performance via a bias-variance trade-off simi-
larly to Ridge regression, but also incorporates the variable
selection effect from Lasso regression, leading to a more
parsimonious and sparse model.

3.1.4 Contractive Penalty

Contractive Penalty [3] aims to control the smoothness
of the learned function, by penalizing large derivatives:
R(fw, x) = ‖Jfw(x)‖2F . Here, ‖ · ‖J denotes the Frobenius
norm and Jfw the Jacobian matrix of fw. It was originally
designed for Contractive Autoencoders [43].

3.1.5 Parameter Tying

In a similar way like L2 encourages weights to be close
to zero, Parameter Tying [15] is another way to focus the
search space of model parameters to be close to some other,
promising values. For example, one can use a parameter
norm penalty of the formR(w(A), w(B)) = ‖w(A)−w(B)‖22
to tie the weights w(A) of a model A to the weights w(B)

of a another model B, which was trained on a similar task.
Furthermore, Parameter Tying can be also used to tie the
weights of a supervised model to the weights of a unsuper-
vised model on the same dataset, in order to capture the
distribution of the observed input data [30].

3.2. Regularization via Network Architecture

Another way to regularize a neural network is to alter
its architecture to have certain properties, matching certain
domain-specific assumptions. One might even argue that
any modification to a Fully-Connected Neural Network en-
codes some form of knowledge. However, additional con-
strains usually also make the optimization task harder, in
exchange for achieving a regularization effect.

3.2.1 Parameter Sharing

Parameter Sharing [15] means to force sets of parameters to
be equal - thus can be seen as an extreme form of Parameter
Tying. However, those equality constrains are usually incor-
porated within the network architecture f itself, instead of a
regularization termR like in the Parameter Tying case. One
of the most prominent use cases of Parameter Sharing are
CNNs. Those convolutional layers encode prior knowledge
about shift-equivariance and locality of feature extraction
[28]. Furthermore, they also reduce the number of weights
that need to be learned by summarizing them into convolu-
tional kernels, thus also speeds up the optimization process
significantly. In a similar way, RNNs use Parameter Sharing
to reflect the time-equivariance of input and hidden units.

3.2.2 Ensemble Methods and Bagging

Ensemble Methods [15] use different models to get multiple
predictions per input sample. Those models are then aver-
aged, meaning they democratically vote for the most likely
output. The rationale behind this approach is that different
models usually don’t make the same errors on the test set.

Bagging (Bootstrap Aggregating) [15] is one form of en-
semble methods. It creates multiple different models by
training them on different sub-datasets, each sampled from
the original training set with replacement. Since not every
sample is present in every sub-dataset, outliers don’t affect
all models, resulting in a more robust model average.

3.2.3 Dropout

For neural networks, Bagging is often not computationally
feasible. Instead, one of the alternatives is to use Dropout
[49]. This introduces stochasticity into the model architec-
ture by randomly dropping units from the network during
training, usually each with 50% probability. Effectively,
this is like training an ensemble of multiple ”thinned” sub-
networks with Parameter Sharing. At test time, the whole,
unthinned network is then again used to approximate the
ensemble vote, with a down-scaling to correct the expected
value. Dropout brings not just an explicit regularization by
modifying the expected objective, but also an implicit one
due to the stochasticity in the updates [56].
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3.2.4 Further Dropout Alternatives

Besides standard Dropout, many alternatives and improve-
ments were developed in the last years. The main variants
are point out in the following:

• MC-Dropout [11] suggests to use Dropout as Bayesian
approximation by performing multiple stochastic for-
ward passes trough a network and averaging the re-
sults, allowing to assess model uncertainty.

• DropConnect [54] generalizes Dropout, that sets a ran-
domly selected subset of weights to zero, instead of
a subset of activations. Empirical results show, that
DropConnect often outperforms standard Dropout.

• MC-DropConnect [36] combines the Bayesian ap-
proach of MC-Dropout with DropConnect, resulting
in better uncertainty estimations, see Appendix A.6.

• Spatial Dropout [51] tries to overcome the problem
of strong spatial correlations in CNNs by applying
Dropout per feature map.

• Max-Pooling Dropout [58] leverages Dropout for con-
volutional layers by applying it directly to the max-
pooling layer before the pooling operation.

• RNN-Drop [37] brings the advantage of Dropout to
LSTMs, by applying the Dropout mask on the internal
cell values and use the same mask at every timestep.

• Variational RNN Dropout [12] brings the Bayesian
MC-Dropout approach into the RNN-domain by ap-
plying the same dropout mask at each time step for in-
puts, outputs, and recurrent layers. In contrast to RNN-
Drop, the masks are applied to the weights instead of
the LSTM-internal cell values, thus can be applied to
general RNNs and GRUs.

• Recurrent Dropout [46] applies Dropout to the cell up-
date vector, which seems to outperform RNN-Drop
and Variational RNN Dropout. For an illustration and
comparison of those approaches, see Appendix A.7.

• Curriculum Dropout [38] proposes to use a time
scheduling for the dropout intensity instead of a fixed
dropout probability, in order to start easy and adap-
tively increasing the difficulty of the learning problem.
Empirical results show that it can significantly improve
standard Dropout, see Appendix B.1.

• Shakeout [25] randomly chooses to enhance or reverse
each unit’s contribution to its next layer, instead of
randomly discarding units as in Dropout. Therefore,
Shakeout adaptively combines L0, L1 and L2 regular-
ization terms, leading to improved sparsity and stabil-
ity during the training process.

3.3. Regularization via Data

The generalization performance of deep neural networks
depends on three key factors: the complexity of the un-
derlying problem, a suitable model capacity for sufficient
expressiveness, and enough data to represent the problem
well. However in practice, the most limiting factor is often
the available training data. This is why regularization by in-
creasing the dataset size is usually one of the most effective
ways to improve the validation accuracy of a model.

This can be done in two ways: On the one hand, more
representative samples can be collected from the real world,
preferably from the same data distribution. Even in the ex-
treme case, the model can be pre-trained with a significantly
larger, but remotely related dataset for regularization, lever-
aging so-called Transfer Learning. On the other hand, the
dataset can be also increased via Data Augmentation. In
a broader sense, this refers to the general strategy to make
the training data larger and more representative by apply-
ing certain transformations. Both methods are highly popu-
lar and effective, implicit regularizers in practice. Similarly
to Weight Decay, the regularization via Data Augmentation
is especially important for the early phases of the training
process [14]. Recent research even suggests to completely
replace Weight Decay and Dropout with it [20].

However, especially Data Augmentation requires
domain-specific knowledge and understanding of the
specific dataset, since it fundamentally depends on the type
of the given data, e.g. images, text, audio, or tabular data.
Furthermore, those transformations can be either done in
a representation-preserving fashion, i.e. simulating the
same ground truth data distribution, or in a representation-
modifying way, meaning by adjusting the underlying
data distribution or feature space to simplify the learning
problem [28].

For the purposes of this paper, a selection over the most
important Data Augmentation techniques for image classi-
fication problems is presented in the following. A more ex-
tensive overview can be also found in [48].

3.3.1 Data Augmentation

Data Augmentation [15] in the traditional sense means to
create additional fake data by transforming the inputs xi of
the dataset D in such a way, that it provides new, meaning-
ful samples. This works especially well for image classifi-
cation problems in computer vision: geometric transforma-
tions like flipping, cropping, rotation, translation, perspec-
tive transforms or color space manipulations like brightness,
contrast saturation or hue adjustments as well as kernel fil-
ters like sharping or blurring are all typical ways to increase
the variety of the training data. Indeed, those kinds of trans-
formations are probably the most well-known regularization
technique via data.
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3.3.2 Noise Injection

Even injecting random noise, either on the input [15] or on
the hidden units [9], is a common strategy to improve the
generalization capabilities and the robustness of the model.
This universal strategy can be also applied to various data
types like audio or tabular data in a natural way. For images,
another alternative would be to randomly add some black
and white pixels, adding so-called ”salt and pepper”-noise.

3.3.3 Cutout and Random Erasing

Cutout [10] takes this idea of adding noise even a step fur-
ther, by completely removing a randomly chosen square
from an image. The rationale is to force the model to take
the whole context into account, instead of possibly only fo-
cusing on prominent features, and making it more robust
against object occlusion. Random Erasing [66] follows a
very similar approach, and additionally suggests to focus
the cutout preferably close to object.

3.3.4 MixUp and SamplePairing

MixUp [63] follows the approach to construct virtual train-
ing data by combining multiple training samples, as the
name suggests. Concretely, two randomly drawn samples
are aggregated to a convex combination, as well as their
respective labels, via a Beta-distributed weight parameter.
This approach incorporates the prior knowledge, that linear
interpolations of feature vectors should lead to the same lin-
ear interpolation of the associated targets. [22] proposed a
similar, but slightly simpler concept called SamplePairing.
While it only uses the label of one sample and just relies
on a simple average, SamplePairing achieves comparable
results like MixUp (see Appendix A.8).

3.3.5 CutMix

CutMix [62] was designed to combine the strengths of
Cutout with those of MixUp. Instead of simply erasing
certain areas and leaving a uninformative and unrealistic
region, CutMix adds the patch of another image and also
mixes the ground truth labels proportionally. Thus, it lever-
ages the regional Dropout feature of Cutout while improv-
ing the training efficiency and is less locally ambiguous and
unnatural compared to MixUp. Empirical results show it is
significantly outperforming both, see Appendix B.2.

3.3.6 AugMix

Many data augmentation techniques improve accuracy at
the cost of robustness or uncertainty. AugMix [19] is a
recent technique developed to overcome this trade-off. It

uses stochasticity to sample and chain multiple basic trans-
formations, a formulation to mix multiple augmented im-
ages into convex combinations, and a Jensen-Shannon Di-
vergence consistency loss to ensure smoother neural net-
work responses. Empirical results indicate an improvement
of the robustness and uncertainty estimates, while simulta-
neously outperforming Cutout, MixUp and CutMix.

3.3.7 Smart Augmentation

Traditional data augmentation relies on a hand-crafted com-
bination of transformations with carefully set parameters.
This gives rise to the question if one can learn to optimize
the design of such transformation pipelines, that is using
meta-learning for data augmentation. Smart Augmentation
[31] is one of the early attempts to learn data augmentation
on a meta-level. It relies on a second neural network, which
takes multiple input images and uses convolutional layers to
generate a new image for training the classification network.

3.3.8 AutoAugment

AutoAugment [7] was designed to automatically search for
the best augmentation policy via Reinforcement Learning.
In detail, each policy contains five sub-policies, which
again are concatenations of two elemental image opera-
tions. Those sub-policies are randomly applied to the im-
ages within a mini-batch. For the Reinforcement Learn-
ing framework, a RNN controller predicts a augmentation
policy, which then is used to train a child network. The
achieved accuracy is forwarded as a reward with a policy
gradient method to update the controller. Empirical results
show that AutoAugment consistently achieves state-of-the-
art results on various image recognition tasks, outperform-
ing simple methods like Cutout, see Appendix B.3.

3.3.9 Fast AutoAugment

However, AutoAugment is quite compute-intense, since for
each update step on the meta-level, a whole child network
has to be trained. To overcome this challenge and to find
good augmentation policies efficiently, Fast AutoAugment
[32] was proposed. It relies on density matching, treating
augmented data as missing data points of the training distri-
bution, and recovering them by the exploitation and explo-
ration of inference-time augmentations via Bayesian hyper-
parameter optimization. Therefore, it reduces computing
hours by three orders of magnitudes, while achieving com-
parable results like AutoAugment.

3.3.10 Population Based Augmentation

Population Based Augmentation [21] is another alternative
to AutoAugment, also addressing the issue of high com-
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putational costs. Instead of finding a fixed augmentation
policy via hyperparameter search on a meta level, it aims
at learning a schedule of policies. This is done by leverag-
ing Population Based Training, a search algorithm that op-
timizes the the parameters of a network jointly with their
hyperparameters. Thus, Population Based Augmentation
achieves comparable results like AutoAugment and similar
performance gains like Fast AutoAugment.

3.3.11 Adversarial AutoAugment

Adversarial AutoAugment [65] is similar to Population
Based Augmentation in that sense, that it replaces a fixed
augmentation policy with a dynamic schedule of augmen-
tation policies along with the training process. However,
as the name suggests, Adversarial AutoAugment utilizes an
adversarial framework to jointly optimize the target network
and the augmentation policy search by reformulating it into
a min-max-game. In fact, a policy network constantly aims
to maximize the training loss through generating adversarial
policies, which improves the robustness of the model. Ad-
versarial AutoAugment is not just more efficient than Au-
toAugment due to using only one target network for pol-
icy evaluation, but also significantly outperforms AutoAug-
ment, see Appendix B.4.

3.3.12 RandAugment

RandAugment [8] completely removes the need for a sepa-
rate, expensive and possibly sub-optimal search phase on a
proxy task. Rather, the parameters for the data augmenta-
tion are fold into the hyperparameters of the model. Con-
cretely, two new hyperparameters are introduced. One se-
lects how many transformations should be sampled from a
uniformly distributed, fixed set of elementary transforma-
tions. The second scales the strength of each transforma-
tions. These two additional hyperparameters incur minimal
computational cost, while the predictive performance gain
of RandAugment is competitive compared with AutoAug-
ment, see Appendix B.5.

3.3.13 Uncertainty-based Sampling

Recently, [59] proposed a Uncertainty-based Sampling
scheme similar to RandAugment. However, instead of av-
eraging the effect of all transformations like RandAugment,
the idea is to better select the transformations with strong
performance. It is performed by uniformly sampling a num-
ber of transformations at random, applying them to the data
and training the network on those data points with the high-
est losses. This approach achieves similar test accuracy
like Adversarial AutoAugment, but is conceptually simpler
and computationally more efficient, since it does not require
training an adversarial network, see Appendix B.6.

3.3.14 Further Data Augmentation Alternatives

Besides these presented, image-centric techniques, some
others are presented in the following, focusing on different
or more general problem settings:

• Fancy PCA [27] adds principal components to the in-
puts proportional to the corresponding eigenvalues,
reflecting the invariance of object identities under
changes of illuminations.

• [9] suggests to use simple transformations like noise,
interpolation or extrapolation in the feature space in-
stead of the input space.

• ISDA (Implicit Semantic Data Augmentation) [55]
augments the training set by applying semantic
transformations like ”make-bespectacled” or ”change-
view-angle” on deep features.

• GMCEM (Generalized Monte Carlo Expectation Max-
imization) [52] uses a Bayesian approach to data aug-
mentation, by sampling from a distribution learned
from the training set.

• TANDA (Transformation Adversarial Networks for
Data Augmentation) [42] uses Generative Adversarial
Networks (GANs) to generate sequences of data aug-
mentation operations for text and image tasks.

• [41] uses a CycleGAN to perform data augmentation
via Style Transfer, i.e. combining the content of an
image with the style of a second.

• [67] translates AutoAugment from the image classifi-
cation to the object detection problem.

• UDA (Unsupervised Data Augmentation) [61] used ad-
vanced data augmentation techniques like RandAug-
ment or Back-Translation to improve semi-supervised
learning on vision and language tasks.

• SMOTE (Synthetic Minority Over-Sampling Tech-
nique) [5] was designed to address the class imbalance
of classification tasks, by generating convex combi-
nations in the feature space of the nearest neighbors
within the minority class.

• EDA (Easy Data Augmentation Techniques) [57] are
a set of four operations for augmenting textual data:
synonym replacement, random insertion, random swap
and random deletion.

• Back Translation [47] is a text augmentation technique
to paraphrase a text while retaining its meaning. It
leverages machine translation by translating a text into
another language, and then back to the source lan-
guage, which usually alters the source text.
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4. Guideline
As one saw in the previous sections, there is at great

number of different techniques to improve deep learning
models in terms of optimization and regularization. How-
ever, many of those techniques are not wide-spreaded, nei-
ther in research nor in practice. This not only leads to a
lack of variety and over-usage of well-known techniques,
but also to inferior design choices for the network architec-
ture as well as sub-optimal models in production.

In order to help researchers and practitioners to over-
come some problems during deep learning development,
multiple problem- and architecture-specific recommenda-
tions shall be given. Note, that still each problem instance
highly depends on the specific architecture, data and task
and thus requires individual investigation and treatment.
However, the guideline on the bottom of this page summa-
rizes possible starting points.

Problem Solution Fully-Connected NN Convolutional NN Recurrent NN

Vanishing /
Exploding
Gradient

Initialization He Initialization
for ReLU based NN

Fixup Initialization
for ResNets (otherwise
as in Krähenbühl 2016)

As in Talathi 2016
for ReLU based RNN

Learning takes
too long Normalization Batch Normalization

Group Normalization
(Weight Normalization
if time complexity bad)

Layer Normalization

Too little data Data
Augmentation

Noise Injection
for numeric data
(+SMOTE if
classification task)

Uncertainty-based
Sampling

Back-Translation for
textual data,
Noise Injection for
other sequential data

Overfitting Regularization Standard or
Curriculum Dropout

Spatial or
Max-Pooling Dropout Recurrent Dropout

High uncertainty Robustness MC-DropConnect AugMix Variational RNN
Dropout

5. Conclusion
Despite the recent advances in deep learning, much is

still not well understood and many areas remain an active
field of research. Especially, the majority of deep learning
research focuses on new neural network architectures, often
leaving more general optimization and regularization tech-
niques comparatively understudied.

To shed light on this hidden side of deep learning, an
overview of various initialization, normalization and regu-
larization methods was given in this paper. Furthermore,
a guideline was presented to overcome problems that may
arise during deep learning development.

The author hopes that this paper provides valuable in-
sights over modern deep learning techniques, supports re-
searchers and practitioners to speed-up their development
processes and improves their models, as well as sparks more
research interest towards this exciting side of deep learning.
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A. Figures

A.1. Naive Initialization [13]

Figure 2. Normalized histogram of activation values (top) and
back-propagated gradients (bottom) for a five-layer neural network
with hyperbolic tangent activation and naive weight initialization
via uniform distribution. Note how both values quickly saturate,
the activations during the forward pass, as well as the gradients
during the backward pass.

A.2. Xavier Initialization [13]

Figure 3. Normalized histograms of activations values (top) and
back-propagated gradients (bottom) for a five-layer neural network
with hyperbolic tangent activation and Xavier Initialization. Note,
how both values remain stable during the forward pass as well as
during the backward pass.

A.2.1 He Initialization Performance [18]

Figure 4. Validation error of He Initialization vs Xavier Initializa-
tion for a 30-layer neural network with ReLU activation functions.
Note, how He Initialization is able to learn while Xavier Initializa-
tion completely stalls.

A.3. Layer Normalization Performance [2]

Figure 5. Validation error during training of a LSTM model. Layer
Normalization achieves significantly faster optimization and better
accuracy at convergence than Batch Normalization.

A.4. Group Normalization Performance [60]

Figure 6. Validation error for different normalization methods dur-
ing training a ResNet-50 model on ImageNet. For CNNs, Group
Normalization achieves similar performance like Batch Normal-
ization, while outperforming Layer and Instance Normalization.
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A.5. Group Normalization Scalability [60]

Figure 7. ImageNet validation error of a ResNet-50 model based
on varying batch sizes. For large batch sizes Group Normalization
works similarly well as Batch Normalization, but it scales signifi-
cantly better for smaller batch sizes.

A.6. MC-DropConnect Uncertainty Estimation [36]

Figure 8. Distribution of the model uncertainty values for MC-
DropConnect vs. MC-Dropout on CIFAR-10 test samples. Note,
that MC-DropConnect produces significantly higher model uncer-
tainty values for incorrect predictions.

A.7. Recurrent Dropout Approach [46]

Figure 9. Three approaches of Dropout in recurrent connections
of LSTM networks: (a) RNN-Drop, (b) Variational RNN Dropout
and (c) Recurrent Dropout. Dashed arrows refer to dropped con-
nections. Input connections are omitted for clarity.

A.8. SamplePairing Performance [22]

Figure 10. CIFAR-10 validation error of a simple CNN model.
One can see, that performing SamplePairing with using label from
only one sample performs similarly well as using a simple aver-
aged label from two samples (basically MixUp).
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B. Tables
B.1. Curriculum Dropout Performance [38]

Table 1. Comparison of Curriculum Dropout versus standard
Dropout and Anti-Curriculum for image classification problems
on different datasets. Note, that Curriculum Dropout frequently
yields better generalization than standard Dropout.

B.2. CutMix Performance [62]

Table 2. Performance of MixUp, Cutout, and CutMix on ImageNet
classification, ImageNet localization, and Pascal VOC 07 detec-
tion tasks compared to a ResNet-50 baseline. CutMix significantly
outperforms MixUp and Cutout.

B.3. AutoAugment Performance [7]

Table 3. Test set error rates of AutoAugment vs. Cutout and Base-
line with various models and image datasets. AutoAugment con-
sistently outperforms Cutout and achieves state-of-the-art results.

B.4. Adversarial AutoAugment Performance [65]

Table 4. Top-1 test error of various models on CIFAR-10 dataset.
Adversarial AutoAugment significantly outperforms Cutout, Au-
toAugment as well as Population Based Augmentation (PBA).

B.5. RandAugment Performance [8]

Table 5. Test accuracy of various models on different datasets.
Note, that RandAugment (RA) performs similarly well or even
outperforms its alternatives, namely AutoAugment (AA), Fast
AutoAugment (Fast AA) and Population Based Augmentation
(PBA).

B.6. Uncertainty-based Sampling Performance [59]

Table 6. Test accuracy of different image classification models on
various dataset. Uncertainty-based Sampling achieves similar per-
formance like Adversarial AutoAugment (Adv. AA), thus outper-
forms AutoAugment (AA), Fast AutoAugment (Fast AA), Pop-
ulation Based Augmentation (PBA), and RandAugment (RA) in
particular.
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