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1. Introduction 

If cells are the building blocks of life, proteins are the workers inside, outside and in 

between cells and other organisms. Proteins are made out of building blocks, called amino 

acids or residues. In nature, there exist 20 amino acids which elevate the combination of 

possible proteins to 20L, where L is the length of a protein. Due to interactions between 

amino acids, proteins adopt a unique 3D shape referred to as the protein fold. Protein 

folding determination has long been one of the unsolved challenges of modern science. 

The folding of a protein largely determines their biological activity and function within 

living organisms. Therefore, determining protein folding has huge implications in drug 

discovery and development.  

The similarity between sequences, the complexity of the problem and the amount of 

data available makes protein folding to fall in the realm of deep learning. The objective 

of this review is to present the similarities between three state of the art methods: 

AlphaFold [1], RaptorX [2] and TripletRes [3]. The text is divided into five parts: an 

introduction to the protein folding problem, an extensive comparison on the differences 

between AlphaFold, RaptorX and TripletRes; the results of these methods in the CASP13 

competition, a section exploring further work in the literature, and finally a conclusion 

and outlook to the future of this field.  

2. Preface on the Problem of Protein Folding 

Proteins are macromolecules consisting of chains of amino acids. Amino acids within a 

protein sequence, often called residues, appear in a distinctive order due to their physical 

properties [4]. Even though protein space is extremely large, there some similarities that 

allow for the study and approximation of their 3D shape.  

Organisms construct proteins from DNA sequences in a two-step process. The first step 

of this process, called transcription, transforms DNA sequences into complementary 

messenger RNA (mRNA) sequences. Later, these mRNA sequences are converted to 

proteins in a step called translation. Consequently, changes in DNA alter subsequent 

proteins. These changes, called mutations, are relatively common in organisms, acting as 

the motor for evolution. Therefore, there exist groups of related proteins (families) with 

just a few different amino acids. The similarity among these proteins causes their 3D 

shape to be extremely similar. As a consequence, the study of protein similarity to 

produce protein folds is one of the pillars of modern methods.  



 

Figure 1 – Alignment between two DNA sequences. The process is equal for protein sequences. Source: [5] 

Given a protein sequence, we can query protein databases in order to find homologs 

(similar proteins). The comparison between sequences is done using alignment methods. 

Figure 1 shows an example of an alignment between two sequences of DNA; however, 

the process is similar for protein sequences. By aligning several sequences, one can 

estimate the degree of similarity between them. Aligning multiple sequences for a 

multiple sequence alignment (MSA). An MSA is a series of alignments between three or 

more proteins from which homology can be inferred [6].  

When a protein folds, residues come together as a consequence of hydrogen bonding, 

Coulombic and van der Waals interactions [7]. These residues are said to be in contact, 

which means that they are closer than a certain threshold, normally under 8 angstroms 

(Å) [8]. Figure 2 (left) shows an illustration of two residues in contact (highlighted in 

red). Contact between residues constraint the final 3D shape of a protein. Therefore, the 

aim of many methods is to generate a contact map which highlight contacts for every pair 

of residues. Figure 2 (right) shows a contact map example for a protein with four residues 

Figure 3 – Top: Basic structure of an amino acid, R denotes the side chain or variable group. Bottom: 

Lysine amino acid, additional carbons in the R-group are labelled from the C-alpha. Source: [34] 

Figure 2 – Left: Two residues in contact are highlighted in red. Right: Contact map 
illustration. Source: [22] 



(A, B, C and D). Red squares indicate that two residues are in contact; meanwhile, grey 

squares mean residues are not in contact. Nevertheless, an amino acid is composed of 

multiple atoms as shown in Figure 3 (top), in which of them should we focus to predict 

contacts? Cβ or the first carbon in the R-group, as shown in Figure 3 (bottom), is the 

preferred atom to study inter residue contacts since it constitute the most accurate 

representation of the 3D structure [9]. 

All of the methods that we will analyze in this review, AlphaFold, RaptorX and 

TripletRes, consist of four main steps. First, the input sequence is compared against 

databases to generate an MSA. From the MSA, features are extracted that will serve as 

the input to the third step, a deep neural network. The neural network will predict either 

contacts between residues or the exact distance depending on the method. Finally, the 

contact or distance information will be used to generate the protein fold. In the next 

section, we will briefly describe each of the methods before jumping into a comparison 

between them. 

3. Method Description 

Here, we will shortly describe AlphaFold, RaptorX and TripletRes as an introduction 

before jumping straight into the comparison between these methods. 

3.1. AlphaFold 

AlphaFold is a method developed by DeepMind focused on predicting the distances 

between the carbon atoms of the protein backbone. The distance map can be used to 

develop the 3D model of a certain protein with a high degree of accuracy. AlphaFold is a 

non-end-to-end differentiable method that consists of two steps. First, the prediction of 

the Cβ-Cβ distance and the torsion angles ϕ and ψ of each residue. Second, a structure 

realization step in which a potential based on the distance and torsion angle distribution 

is minimized by gradient descent until reaching the final protein conformation. 

3.2. RaptorX 

RaptorX encompasses several approaches, namely RaptorX-TBM, RaptorX-Contact 

and RaptorX-DeepModeller. These different approaches vary slightly on the databases 

used to construct the input features as well as the preprocessing of the input features. 

However, during this section we will consider only RaptorX-Contact. First, because it 

achieves the best results during the contact prediction competition in CASP13 out of the 

three RaptorX methods. And secondly, because it would be tedious for the reader to 

follow the subsequent discussion. 



In Figure 4, we can see the main steps for protein structure prediction in the RaptorX 

pipeline. This pipeline can be divided into three main steps: feature extraction from 

protein sequence, learning step (marked in red) and the use of Crystallography & NMR 

System (CNS) software to generate the final protein structure prediction.   

3.3. TripletRes 

The method described in [3], introduces both TripletRes and ResTriplet. Figure 5 

provides an overview of both methods. These are used to predict the contacts between 

residues of a protein sequence. However, we will only discuss TripletRes from here on, 

as it was the outperforming method in the CASP13 method out of the two. The pipeline 

consist of the extraction of coevolutionary features using homologs search, and an end-

to-end learning step which outputs the contact matrix for every residue pair. Finally, the 

I-Tasser folding engine is used to generate the protein fold [10]. 

 

 

 

Figure 4 – RaptorX pipeline for protein structure prediction. Source: Own figure 

Figure 5 – Pipelines for the TripletRes and ResTriplet methods. Source: [3] 



4. Comparison 

In this section, we will compare the methods based on their inputs, outputs, architectures, 

and training schemes. Table 1 shows a comparative between these methods based on 

several criteria which will be useful along this review. 

 

4.1. Inputs 

Protein structure prediction depends heavily on sequence search of similar proteins. 

As seen in Table 1, the three methods use MSA to construct their inputs. However, there 

are differences on how the MSA is constructed as well as the features which are produced 

using the MSA. 

While constructing the MSA, there are some design options that need to be addressed. 

For example, which database to use or how similar should sequences be to be included in 

the MSA. Another question to tackle is whether to construct the MSA for full proteins or 

domains. Certain proteins can be divided into domains which are short sections of 

proteins which can evolve, function and fold independently [11]. Since domains are 

shorter subsections of proteins, studying them separately allows to find more sequence 

homologs than for the whole protein. AlphaFold and TripletRes construct the MSA using 

domains while RaptorX uses whole sequences. AlphaFold extracts proteins from the 

Protein Data Bank (PDB) [12]. Then it extracts domains with less than 35% similarity 

between them using the CATH database [13]. On the contrary, RaptorX generates its 

training data from the PDB25, a protein database where sequences are no more than 25% 

similar. TripletRes extracts domains consisting of 30-400 residues and with less than 30% 

similarity from the SCOPe 2.07 database [14]. We can notice the abysmal difference 

between the training domains of AlphaFold versus TripletRes. Although both methods 

search for domains with less ~30% of redundancy, AlphaFold uses the CATH database 

which contain 500,238 domains while TripletRes uses the SCOPe database which 

contains approximately half of domains (276,231). Therefore, database choice may have 

had an impact in the final performance of each model. 

 AlphaFold RaptorX TripletRes 

Inputs MSA MSA MSA 

Training instances 31,247 domains 11,410 proteins 7,671 domains 

Architecture 2D ResNet 1D + 2D ResNet 2D ResNet 

Network depth 220 blocks 7 (1D) + 60 (2D) 24*4 blocks 

Outputs (pre-folding) Distance map Distance map Contact map 

Folding Engine Gradient-based CNS I-Tasser 
Table 1 – Comparison between AlphaFold, RaptorX and TripletRes. Source: Own Table 



Once sequences are collected, the MSA is generated for each training instance. AlphaFold 

searches for homologous sequences in Uniclust30 [15] using the HHblits [16] searching 

tool. RaptorX approach is similar, although four different MSA are generated for each 

training sequence. This are later used to generate four different predictions, which are 

averaged to obtain the final result. MSAs are generated  searching in UniProt and 

UniClust30 using HHBlits and Jackhmmer [17], with different E-values (interpreted as 

the probability of observing homology matches by chance). On the contrary, TripletRes 

uses a more complex approach called DeepMSA [18]. DeepMSA is a three-step method 

which searches through three different databases. Depending on the number of effective 

sequences found at each step the method proceeds to the next step or not. 

After MSAs are constructed, several features are generated that will serve as inputs to 

the deep learning step. TripletRes and AlphaFold create a Potts model from the MSA as 

input feature. The Potts model is a generalization of the Ising Model. It takes the following 

form: 

𝐻(𝑆) = ∑ ℎ𝑖(𝑠𝑖)

𝐿

𝑖=1

+ ∑ ∑ 𝐽𝑖𝑗(𝑠𝑖 , 𝑠𝑗)

𝐿

𝑖<𝑗

𝐿

𝑖=1

 

The sequence S encodes 21-states (20 states accounting for each aminoacid plus a state 

for a gap). ℎ𝑖(𝑠𝑖) encodes the one-site marginal probabilities of the MSA while 𝐽𝑖𝑗(𝑠𝑖, 𝑠𝑗) 

two-site marginal probabilities (i.e., the marginal probability of a pair of residues i and j) 

[19],[20], [21]. In Figure 6 (left), we can see an example of the AlphaFold input which 

represents a single slice in the z-direction of the Potts Model.  

As seen in Figure 5, TripletRes also uses as input the covariance matrix (COV) and its 

inverse, the precision matrix (PRE). The covariance matrix is defined as: 

𝑆𝑖𝑗
𝑎𝑏 = 𝑓𝑖,𝑗(𝑎, 𝑏) − 𝑓𝑖(𝑎)𝑓𝑗(𝑏) 

Figure 6 Left: Example of an input slice to the network. Right: One-dimensional features are repeated in x and y and 
concatenated to the rest of the input features. Source: [1] 



where 𝑓𝑖,𝑗(𝑎, 𝑏) is the observed frequency of residue pair a and b at position i and j and 

𝑓𝑖(𝑎) is the frequency of occurrence of a residue type a at position i. On the other hand, 

RaptorX uses the mutual information (MI) to study the correlation between residues. The 

MI is defined as:  

𝑀𝐼 = ∑ 𝑓(𝐴𝑖𝐵𝑗)
𝑓(𝐴𝑖𝐵𝑗)

𝑓(𝐴𝑖)𝑓(𝐵𝑗)
𝑖,𝑗

 

where 𝑓(𝐴𝑖𝐵𝑗) measures the combined frequency of two pairs of amino acids and 

𝑓(𝐴𝑖) measures the frequency of a single amino acid. Mutual information has the 

disadvantage that even when residues are not connected in the 3D structure, there is some 

indirect mutual information between them [22].  

In contrast to TripletRes, AlphaFold and RaptorX use sequential features (1D features) 

on top of the pairwise features that have just been described. The biggest difference is 

how these 1D inputs are processed. While RaptorX uses a 1D residual network to process 

them as shown in Figure 7, AlphaFold repeats the 1D features in x and y before 

concatenating them to the pairwise (2D) features (Figure 6 left). 

One important difference is how inputs are fed into the networks. RaptorX and TripletRes 

input the whole feature into the network. Meanwhile, AlphaFold uses a patch-based 

approach. The input is split in patches of 64x64 pixels. By sampling these patches with 

random offsets, each training sample can generate thousands of patches which acts as a 

mechanism against overfitting. Finally, at inference time, patches are averaged together, 

with patches around the center having a higher weight. 

4.2. Architectures  

As previously mentioned, RaptorX uses a combination of 1D and 2D neural networks to 

produce its final result. RaptorX sequential features are processed by a 1D ResNet block 

consisting of 7 convolutional layers with a kernel size of 15. This stage produces a set of 

L features, namely 𝑣 = 𝑣1, 𝑣2, … , 𝑣𝐿. These features are then converted to a 2D 

Figure 7 – RaptorX’s deep learning distance prediction pipeline. Source: [2] 



representation. For each pair of residues, i and j, the features 𝑣𝑖, 𝑣(𝑖+𝑗)/2, 𝑣𝑗  are 

concatenated. Repeating this step for each pair of residues produces a LxLx3n feature 

map. Then, these features are processed by a 60-blocks neural network that produces the 

final output. Meanwhile, TripletRes handle each of its inputs by a separate residual 

network with 24 blocks each. These are followed by another 24-block network which 

outputs the final result. AlphaFold uses the deepest network, 220 blocks, which result in 

21 M parameters. As it can be observed, all presented methods use residual networks as 

their architecture of choice. The building blocks of these residual networks vary from 

method to method. For example, AlphaFold makes use of three convolutional layers while 

TripletRes and RaptorX only use two per block. However, these differences are slight and 

prone to have been decided by a trial-and-error approach. 

4.3. Output and Training Details 

The output of the networks is where some of the biggest differences between methods lie. 

During the introduction, we have presented how contacts can help determine the 3D 

structure of a protein. However, contact determination is not as informative as it could 

be. Determining whether two residues are in contact or not, gives no information on the 

exact distance between them. We know they should be closer than a certain threshold, but 

not how close. Therefore, predicting the distance between each pair of residues would be 

much more informative. AlphaFold and RaptorX opt for this approach meanwhile 

TripletRes predicts the contact maps. Figure 8 (left) shows an example of the output of 

the network for a single pair of residues. AlphaFold method predicts the marginal distance 

distribution of distances between every pair of residues. To do so, the output of the 

network is divided into 64 equal bins in the range of 2-22 Å. Figure 8 (right) shows the 

mean of the distance histograms (distograms) for all residues. RaptorX uses a similar 

method. However, less bins are used to encode the final output. The predicted distance 

distribution between residues is discretized using 25 bins (<4.5Å, 4.5-5Å, 5-5.5Å, …, 

15.5-16 Å, >16Å). Therefore, the output is encoded as a LxLx25 matrix. 

Figure 8 – Left: Distance distribution in AlphaFold for a pair of residues in protein T0955. Right: Mean 

of the distance distribution for all residue pairs (AlphaFold). Source: [1] 



Apart from the distances, AlphaFold and RaptorX predict several other outputs that will 

be used in the protein folding step. However, while AlphaFold predicts these secondary 

outputs from the final activations of a unique network, RaptorX uses individual networks 

for each output. Torsion angles of each residue are predicted by both AlphaFold and 

RaptorX. As shown in Figure 9 (left), the torsion angles specify the position of the atoms 

with respect to each other. In both methods, only ϕ and ψ are predicted since ω is 180º 

in a majority of the cases. AlphaFold predicts the distribution of the torsion angles from 

the final activations. The probability of ψ and φ taking a certain value in the range -180º 

to + 180º is discretized in 10ºx10º bins, which results in 1,296 values. On the other hand, 

RaptorX uses an additional 1D ResNet to predict the torsion angles and the secondary 

structure. Although AlphaFold also predicts the secondary structure, this information is 

not used in their pipeline to produce the final folding. 

Additionally, to the distance between Cβ-Cβ atom pairs, RaptorX also predicts distances 

between other three atom pairs for each residue (i.e., Cα-Cα, Cg-Cg and N-O). 

Consequently, the final output contains more information on how the protein should fold. 

The distance distribution of atom pairs is done individually.  Therefore, RaptorX repeats 

the pipeline shown in Figure 7 four times, one for each distance distribution.  

Regarding their training scheme, AlphaFold and RaptorX use SGD as optimizer while 

TripletRes uses the Adam optimizer [23]. TripletRes and RaptorX are trained for 

~300,000 steps while AlphaFold is trains for double, 600,000 steps. This could show that 

TripletRes and RaptorX are prematurely ended or more hyperparameter tweaking was 

needed. TripletRes performs a binary prediction (contact or not contact). Therefore, it the 

loss used is binary cross-entropy. AlphaFold and RaptorX use as cross-entropy as their 

loss. However, RaptorX uses a weighted version. The weighting scheme is introduced to 

compensate for the small number of contacts among all residue pairs.  

All methods use ensemble techniques to improve accuracy and make the predictions more 

robust. AlphaFold uses four different networks with slightly different hyperparameters 

which are averaged together. On the contrary, RaptorX opts to generate slightly different 

MSAs (four) which are used to train different networks. TripletRes uses a 10-fold cross 

validation scheme to produce its final output. 

Figure 9 – Left: Torsion angles of a residue. Source: [35].  



Regarding computational power, AlphaFold is trained using a batch size of 32 split into 

8 different GPUs. The training took 5 days for 600,000 steps. Meanwhile, TripletRes 

requires 4 GPUs with a varying batch size depending on the length of the protein. 

Unfortunately, this information was not available for RaptorX.  

In summary, the biggest differences in this section are the prediction of distances by 

AlphaFold and RaptorX in comparison with the prediction of contacts by TripletRes. The 

networks present a marked difference in complexity. However, whereas AlphaFold uses 

one network to predict all their outputs, RaptorX trains five different networks for four 

atom distance pair prediction (i.e., Cβ-Cβ, Cα-Cα, Cg-Cg and N-O) plus one for torsion 

angle prediction. Therefore, a direct comparison in terms of complexity is not as 

straightforward. Nevertheless, a better metric to judge the complexity of each network 

would be the number of parameters; unfortunately, only AlphaFold discloses this 

information. 

4.4. Protein Folding 

Finally, we will analyze the folding mechanism of the three groups. Both RaptorX and 

TripletRes use folding engines to produce the final protein folding. These engines use the 

information generated by the neural networks in the previous step as constraints in their 

minimization pipeline. RaptorX constructs the final protein structure using the 

Crystallography & NMR System (CNS) which is a software for protein structure 

determination commonly used for computational biology. The learned distance 

distributions, backbone torsion angles and secondary structure are used as constraints for 

the CNS when predicting the protein folding. For each protein, out of the L2 predicted 

distances between residues, only 7L pairs with the highest likelihood of having a distance 

<15Å are used as inputs for the CNS step. For these 7L residue pairs, lower (mean minus 

standard deviation) and upper (mean plus standard deviation) bounds are defined to 

constraint the final folding of the protein. For every protein, CNS creates 200 possible 3D 

models. The five with the least violation of restraints are chosen as the final models. In 

contrast, TripletRes uses the physical-based folding engine I-Tasser. In comparison to the 

CNS, the I-Tasser engine is more powerful producing better folds as a result. Both of 

these methods minimize a global energy. On the other hand, AlphaFold constructs a 

protein-specific potential using the information from the deep learning step (distance and 

torsion angles distributions) which is then minimized using gradient descent. In order to 

construct a differentiable potential, both the distance and the torsion angle distribution 

should be continuous functions. Therefore, AlphaFold constructs a smooth potential 

Vpotential from the distance distributions. To do so, the distance distributions are fitted to a 

cubic spline. A reference distribution which predicts the distance between residues is 

calculated in order to produce an unbiased potential. This reference state is trained using 

only the overall length of the protein and a binary feature δαβ if the residue is glycine or 

not (since glycine does not have a β carbon). Thus, the normalized distance potential is: 

𝑉𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒙) =  − ∑ 𝑙𝑜𝑔 𝑃 (𝑑𝑖𝑗|𝑆, 𝑀𝑆𝐴(𝑆)) − 𝑙𝑜𝑔 𝑃(𝑑𝑖𝑗|𝑙𝑒𝑛𝑔𝑡ℎ, 𝛿𝛼𝛽)
𝑖,𝑗 𝑖≠𝑗

          



Then, a von Mises distribution is fitted to the marginal distribution of the torsion angles. 

The last term of the potential accounts for the van der Waals forces among residues. This 

term, named Vscore2_smooth, prevents unnatural overlaps between two non-bonding atoms 

(known as called steric clashes) in the final protein structure. This term is introduces using 

the open-source framework Rosetta [24]. Therefore, the final potential is: 

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐺(𝜙, 𝜓)) + 𝑉𝑡𝑜𝑟𝑠𝑖𝑜𝑛(𝜙, 𝜓) + 𝑉𝑠𝑐𝑜𝑟𝑒2_𝑠𝑚𝑜𝑜𝑡ℎ(𝐺(𝜙, 𝜓))        

In the equation above, the term 𝐺(ϕ, ψ) represents the parametrization from the torsion 

angles to the backbone atom coordinates such that 𝒙 = 𝐺(ϕ, ψ). As a result, the potential 

defined by Equation 2 is fully differentiable with respect to the torsion angles. Therefore, 

it can be minimized using L-BFGS [25], a gradient descent algorithm. Since the 

minimization is conditional on the sampling from the distance and torsion distributions, 

sampling from the initial distributions is repeated to avoid getting stuck in local minima. 

In comparison to AlphaFold, RaptorX only uses the mean plus/minus the standard 

deviation instead of the whole predicted distribution, throwing away valuable information 

in the folding step. Both the CNS and I-Tasser minimize a global (not protein specific) 

function whereas AlphaFold potential is derived explicitly for the MSA of a given protein; 

then, it could have more expressivity in order to reach the final protein fold. 

5. CASP13 Results Comparison 

Throughout this review, we have explored three different methods for protein folding 

using deep learning, namely AlphaFold, RaptorX, and TripletRes. All these methods 

participated in the CASP13 protein folding competition making its comparison easier and 

more objective.  

As a foreword, protein folding result comparison is a challenging topic. This is because 

metrics are not as straightforward as with other machine learning tasks such as image 

recognition. CASP, the leading competition for protein folding, is an example of this. In 

every competition, is not until after the submission when metrics and z-scores are defined 

by assessors. This is due to the fact that the proteins in which the assessment is performed, 

can be divided into Free Modelling (FM) or proteins which have few homologs and 

Template-Based Modelling (TBM) or proteins with a large number of homologs. 

However, this distinction is not clear, and there are several categories in between (e.g., 

TBM easy, TBM hard, TBM/FM, etc.). Therefore, until all proteins are analyzed by 

experts, proper and unbiased z-scores cannot be defined.  

Additionally, the CASP13 competition has several rankings (e.g., regular targets, 

multimeric targets, contact predictions, etc.) and not all the three methods competed in 

all of them at the same time. For that reason, the methods will only be compared in the 

regular target section (which is the main competition ranking) and contact predictions1. 

 
1 AlphaFold did not submit its results for the contact prediction in CASP13. However, they are described in [1]. 



In this section, we will analyze and compare the three presented methods according to 

their results in the CASP13 competition. In Figure 10, we see the results for AlphaFold, 

TripletRes and RaptorX in the regular target section of the CASP13 competition. Next to 

the method name, in between brackets, the position achieved by each method is shown. 

The regular target ranking considers the performance of these methods on 104 proteins. 

The concrete metric used varies depending if the proteins are suitable for FM, TBM or in 

between. AlphaFold achieves the first position obtaining an improve of ~12% over 

TripletRes (which achieved second position) and a 60% difference against RaptorX 

which achieved ninth position in this category. When only analyzing TBM models, 

TripletRes achieves the first position with a z-score of 63.27 followed by AlphaFold 

(second position) with a score of 62.47 and RaptorX (eighth position) with a score of 

51.92. This shows that deep learning methods that do not use template information (like 

AlphaFold and TripletRes) can predict with high accuracy 3D protein structure. However, 

it could be argued that deep learning methods encode this information for all training 

proteins as long as it is complex enough. For FM targets, AlphaFold achieved the first 

position in terms of z-score and expert assessment. Human manual assessment concluded 

that AlphaFold predicted the best 3D configuration twice as many times as the next 

competitor. 

Contact prediction is key when constructing the fold of a protein. For a large number of 

proteins, estimating as few as 8% is sufficient to reconstruct their folding [26], [27]. In 

order to make metrics length-invariant, it is usual to evaluate the most probable L/l 

contacts, where L is the length of the sequence. Therefore, if a protein has 150 residues, 

the L/5 metric will only evaluate the most probable 30 contacts. The second difficulty 

when evaluating contacts is that short-range contacts are easier to predict than long-range 

contacts. That is, predicting a contact between two residues closer together is easier than 

Figure 10 – Result of AlphaFold, TripletRes and RaptorX (DeepModeller) on the CASP13 competition. Source: Own 
figure based on CASP13 results 



for two residues further apart in the sequence. Thus, contact evaluation is divided in short, 

medium or long-range predictions, being the latter the most used metric. In Figure 11, we 

can see the predicted long-term contacts (top L, L/2 and L/5) for the 104 proteins in the 

test set of the CASP13 competition. It can be seen that AlphaFold, RaptorX and 

TripletRes consistently occupy the first, second and third position for every metric and 

protein group. 

It is interesting that even though RaptorX contact prediction results were better than those 

obtained by TripletRes, their final folds perform much worse than the ones from 

TripletRes. From Figure 11 (above), we can see that the difference in contact prediction 

performance is slight between the best and worst results. However, when considering the 

protein fold, the performance difference is ~60%2. This stress the importance of the 

folding pipeline in the final output. 

In summary, CASP13 results point out the dominance of AlphaFold in all tasks. In the 

next section, we will explore other work in the field of protein folding. 

6. Other Work 

In the CASP13 competition, there were 99 competitors. Two years later, in CASP14, the 

number of contenders increased to 146. This shows the increasing interest in the scientific 

community for the protein folding problem. In the regular target podium of CASP13, after 

AlphaFold and TripletRes, we find the MULTICOM method [28]. Similar to TripletRes, 

MULTICOM predicts the contact between residues instead of the distances. However, it 

uses a two-step deep learning approach. The first step predicts the probability maps at 

 
2 Difference between AlphaFold and RaptorX for regular targets in the CASP13 competition 

Figure 11 – Long-range contact prediction results for the CASP13 competition. Source: [1] 



different distance thresholds (i.e., 6, 7.5, 8, 8.5, and 10 Å). Then these are concatenated 

and processed by a convolutional neural network that outputs the final contact probability 

map at 8 Å distance threshold. Nevertheless, MULTICOM as the presented methods is 

not end-to-end differentiable. Other methods, such as NEMO (Neural energy modeling 

and optimization) do perform the sequence-to-structure process in an end-to-end 

differentiable manner [29]. Like AlphaFold, NEMO constructs protein-specific 

potentials. However, NEMO approach uses no co-evolutionary information (no 

homologs) and uses concepts of Langevin dynamics to produce the final fold. Many of 

the presented approaches center their efforts in predicting accurate contact or distance 

maps. However, as seen in the results section, it is arguable that the folding pipeline is 

even more important (of course given good enough contact results). Studies such as 

ProteinSolver [30], focus on the folding pipeline given contact maps. ProteinSolver 

models residues as a graph and connects them depending on the input contact map. Using 

Graph Neural Networks [31] the final protein fold can be generated. During this review, 

we have analyzed the main methods presented at CASP13. Nevertheless, it would not be 

complete without a mention to AlphaFold 2, the uncontested winner of CASP14.  

AlphaFold 2 improved on the second contender almost by a 300% [32]. Their 

improvement was so large, that even the organizers of CASP have called the protein 

folding problem solved [33]. Although there is not a publication yet, AlphaFold2 seems 

to be an end-to-end approach that generates the MSA features within the deep learning 

pipeline using a transformer model. Unfortunately, we will need to wait to hear the 

concrete details. 

7. Conclusion 

We have presented here a comparison between three methods for protein folding: 

AlphaFold, TripletRes and RaptorX. We have described the advances made in this field 

such as the introduction of more informative distance prediction (AlphaFold and 

RaptorX) or the use of protein-specific potentials (AlphaFold). AlphaFold has been 

proclaimed as the undoubted winner in this comparison. Nevertheless, RaptorX and 

TripletRes contribute significantly with their approaches.  

In general, we have seen that the methods presented here are highly dependent on the 

input MSA (worse MSA leads to a worse result). Therefore, folding of proteins without 

any or few homologs is still a challenge that needs to be solved before any biological 

application (i.e., protein design). Nevertheless, AlphaFold2 seems to have tackled this 

problem and come up with a solution that will be ready to real life situations. With the 

solution of protein folding, other problems arise such as being sure of the calibration of 

these methods. Undoubtedly, breakthroughs in this field will lead to a better 

understanding of the machinery of life. 
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