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Abstract — Deep learning has become a growing research field and has been applied to various practical
problems. However, an issue encountered with neural networks is that they tend to be over-confident with
their decisions due to overfitting on the data and that the predicted output probability does not represent the
true certainty of the decision. Especially when applying learned algorithms to decision-making in real-world
problems such as object detection in automated driving or medical diagnosis a system has to provide an
uncertainty measurement which indicates how likely the decision is wrong. This report explores different post-
hoc calibration methods which can be directly applied to every probabilistic classifier and compares parametric,
non-parametric methods and the recently proposed mix-n-match approach towards calibration.

1 Introduction

Machine learning and especially deep learning have been applied to many classification tasks with grat success.
To use these methods in real-world decision-making systems and for safety-critical applications such as medical
diagnosis or object detection in autonomous driving, an uncertainty estimate of the decision is necessary to
ensure reliability of the system as well as trustworthiness for the end user. With these given circumstances,
the requirement for a system is that it is both accurate predicting the correct outcome and can also indicate
how confident it is in this decision. For a probabilistic classifier this implies that the classification scores
obtained by the model should reflect the true correctness likelihood of the output. This problem is referred to
as calibration of a model. Simple but not very accurate methods such as logistic regression and decision trees
are well-calibrated. However, it has been shown in empirical studies that these requirements are not fulfilled by
neural networks which are more expressive in general. Model capacity, batch normalization and weight decay
as a regularization technique are examples for factors to decrease calibration [1].

Different approaches for calibration have been studied in the literature and can be clustered into three
categories. A visualized conceptual map is given in Figure 1. The first category which we refer to as ab-initio
calibration comprises all methods which train ab-initio well-calibrated methods. The second group includes
Bayesian frameworks to represent prediction uncertainty. Examples to be mentioned here are MC Dropout
[2] or Stochastic Variational Inference [3]. The last group of categories which we will study in depth in this
report is post-hoc calibration. Post-hoc calibration covers all methods which calibrate the models after training
by applying a transformation of a classifier’s predictions in a post-processing step. A major advantage of this
approach is that it is build on top of a pretrained classifier and can therefore be applied to any classification
method with a probabilistic output prediction.
To explore the topic of post-hoc calibration, we introduce in Section 2 what calibration in multi-class

classification means, what the goal of calibration is and which properties a calibration method needs to fulfill.
In Section 3, we review different evaluation methods for calibration, explain the different metrics and show
the differences between them. In Section 4, we then explore different calibration methods including two basic
methods as well as novel mix-n-match extensions of these methods. In Section 5 we compare the different
approaches in multiple setups to emphasize their advantages and disadvantages. Finally, in section 6 we
summarize the main post-hoc calibration methods and their usages.
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Platt Scaling [4]

Temperature Scaling [5]

Ensemble Temperature
Scaling [6]

Dirichlet Calibration [7]

Isotonic Regression [5]

IROvA [6]

IRM [6]

TS-IROvA [6]

Figure 1 Conceptual map of calibration methods with focus on post-hoc calibration methods. In blue, methods that will
be explained in depth in Section 4. Methods marked in gray, on the other hand, are not covered in this report.
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2 Problem Setup

In this report we will study the task of calibrating classification methods and will therefore first define the
classification setup as well as the calibration task.

Lets denote X as the input space and Y as the label space where X and Y denote random variables with an
unknown joint probability distribution P(X,Y ). X represents the input features and Y represents the L-class one
hot encoded label vector. Given a probabilistic classifier f : X → Z ⊆ ∆L the output z = f (X) represents
the predictive distribution over the class labels for a given input X . Thus, the vector z = (z1, . . . , zL) defines
a probability distribution of the probability simplex ∆L with z1, . . . , zL ∈ [0, 1] and

∑L
i=1 zi = 1. In machine

learning, the goal is to find the optimal probabilistic classifier such that the negative log likelihood on a training
data set {xi, yi}ni=1 is minimized.
The information about calibration of a probabilistic classifier is contained in the canonical calibration function

π(z) defined as
π(z) = P(Y ∈ ·| f (X) = z) (1)

where · represents the placeholder for any label Y ∈ {1, . . . , L} [8]. A model is called reliable or class-wise
calibrated if and only if the following condition is fulfilled

π(z)(l) = P(Y l = 1| f (X) = z) = z∀X ∈ X (2)

where pi(z)(l) represent the actual likelihood of X being labeled as class l. A deviation in the confidence from
the actual likelihood is called miscalibration of a model.
In some literature [1] a weaker condition for calibration can be found where only the predicted label has to

be calibrated resulting in the following condition for a well-calibrated system

argmaxl∈{1,...,L }π(z) (3)

This weaker condition should not be used for defining calibration as the model should be calibrated as well on
less likely predictions.
To improve the calibration of an already existing trained classifier such as a deep neural network the output

can be transformed in a post-processing step referred to as post-hoc calibration. By relying on already existing
classifiers, it is especially useful for modern deep learning classifiers due to its generality, flexibility and freedom
in designing the classifier [8]. The pipeline to perform post-hoc calibration consists of two steps. In a first step,
a calibration map T : ∆L → ∆L is learned on a validation set with nc data samples to transform the outputs to
estimated probabilities. To avoid unwanted bias in the calibration a training-independent hold-out validation set
should be used here. In the second step, the learned calibration map is evaluated on another evaluation set with
ne data samples.
Depending on the design of the calibration map, post-hoc calibration methods can be further distinguished in

parametric and non-parametric methods. Whereas parametric methods comprise all calibration maps defined by
a finite-dimensional parametric space, non-parametric methods rely on calibration maps described by infinite-
dimensional parameters.
Zhang et al. [6] propose three desideratas for post-hoc calibration which should be carefully considered

when designing such methods. The first desiderata is accuracy preservation indicating that calibration should
not come at cost of accuracy. The underlying problem is that by applying the post-hoc transformation the
predicted labels can change causing a decrease of a classifier’s accuracy. To achieve accuracy preservation the
calibration map should not change the order of the classification scores. If this property is not fulfilled the design
scheme in Equation 4 can be applied. This design scheme learns a strictly isotonic function g to transform each
classification score zl and then normalizing the transformed vector to obtain a probabilistic prediction T(z).

g : [0, 1] → R≥0

T(z) = (g(z1), g(z2), . . . , g(zL))/
L∑
l=1

g(zl)
(4)
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In addition, data efficiency is a desirable property of a calibration method. Whereas data efficiency means the
ability to achieve well calibration without requiring large amount of calibration data for learning the calibration
map. The last desiderata is high expressive power of the calibrationmethod. High expressive power is understood
as sufficient representation power to estimate the class probabilities given enough calibration data.
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3 Calibration Evaluation

In the following section, we present different evaluationmethods for calibration. In general, the task of evaluating
the calibration of a model is to check whether the probabilities predicted by a model - a classifier in this case -
match the distribution of realized outcomes [8].

3.1 Reliability Diagram

A visual tool for evaluating the calibration of a model is the so called Reliability Diagram which have been first
proposed for evaluating the reliability of meteor forecasts [9]. By plotting the sample accuracy as a function of
the model confidence the miscalibration of the model can be visualized. For a model with perfect calibration the
accuracy equals exactly the confidence of the model and the plotted function corresponds exactly the identity
function.

If data points in the reliability diagram lay above the identity line the model is over-confident and if data
points lay below the identity line the model is under-confident. An exemplary reliability diagram can be seen
in Figure 2 where the left diagram is showing an overconfident model and the right diagram is showing an
under-confident model.

Figure 2 Exemplary reliability diagram from [1]

3.2 Expected Calibration Error

An intuitive statistic to measure calibration relative to the ideal reliability diagramwas introduced with Expected
Calibration Error (ECE). The metrics measures the expected difference between confidence and accuracy of the
classifier [10].
Mathematically written ECE is defined as

E
P̂
[|P(Ŷ = Y |P̂ = p) − p|] (5)

where p stands for the accuracy and P(Ŷ = Y |P̂ = p) for the confidence of the evaluated classifier. There exist
different versions for calculating the calibration error. We will present in this report two different ones, the most
common one, histogram-based ECE, and the more recently proposed kernel-based ECE. Further extensions of
ECE are defined in [11] which we won’t explore in detail here.
To use the ECE metric for multi-class classification it has to be reduced to one effective dimension to avoid a

curse of dimensionality in convergence of the metric. In this setting, top-label ECEd can be examinedmeasuring
the expected calibration error for the model’s top d predictions and the corresponding true probabilities [12].
A second option if the calibration error among all classes is of interest, the class-wise ECE can be measured to
measure the average gap across all class-wise predictions [7].
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3.2.1 Histogram-based ECE

The initial calculation of ECE as proposed in [10] uses binning for estimating confidence and accuracy of the
classifier. Using this histogram-based approach toward estimation ECE is defined as the weighted average gap
among these bins mathematically written as

ECE =
M∑
m=1

|Bm |

n
|acc(Bm) − conf(Bm)| (6)

where M corresponds to the number of bins, |Bm | the number of predictions in bin m, n is the total number of
predictions over all bins and acc(Bm) and conf(Bm) correspond to the accuracy and respectively confidence in
bin m.

In recent research several issues of this approach has been identified. First, using a finite set of bins for
estimating the calibration error can underestimate the actual calibration error[12]. Second, due to the used
binning scheme for estimating confidence and accuracy histogram-based ECE suffers from the same drawbacks
as histogram. These drawbacks include a bias-variance trade-off due to the sensitivity to binning schemes as
well as data-inefficiency [6].

3.2.2 Kernel-based ECE

Due to the above mentioned issues of the histogram-based ECE Zhang et al. propose a kernel-based ECE
using a kernel density estimator for estimating confidence and accuracy of the classifier [6]. Therefore, a kernel
smoothing function K is introduced for smoothing the estimated probabilities

K : R→ R≥0

Kh(a) = h−1K(a/h)
(7)

where h > 0 corresponds to the kernel bandwidth.
Using this kernel function, the probabilities can be estimated as

p̃(z) =
h−L

ne

ne∑
i=1

L∏
l=1

Kh(zl − z(i)
l
)

π̃(z) =

∑ne
i=1 y

(i)∏L
l=1 Kh(zl − z(i)

l
)∑ne

i=1
∏L

l=1 Kh(zl − z(i)
l
)

(8)

resulting in the following definition of kernel-based ECE:

�ECE
d
( f ) =

∫
‖z − π̃(z)‖dd p̃(z)dz (9)

Especially for a small evaluation calibration dataset this method is less unbiased and represents the true
calibration error more accurate compared to histogram-based ECE[6]. The kernel-based ECE can thus be seen
as a data-efficient variant of ECE with high potential for an evaluation metric.

3.3 Maximal Calibration Error

In safety-critical applications the worst-case deviation between confidence and accuracy is more meaningful
than ECE. Therefore the Maximal Calibration Error (MCE) is defined as seen in Equation 10.

max
m∈{1,...,M }

|P(Ŷ = Y |P̂ = p) − p| (10)

To give an intuitive explanation of the MCE we refer to the reliability diagram where the maximum calibration
error corresponds to the maximum confidence gap of the classifier visualized in red in Figure 2.
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3.4 Calibration gain

To directly evaluate the enhancement caused by applying a calibration map can be measured by the calibration
gain. The calibration gain measures the reduction of ECE achieved by the calibration map. In mathematical
terms the calibration gain is defined as follows

∆ECE2(T) = ECE2( f ) − ECE2(T ◦ f ) (11)

where f represents the classifier mapping and T the calibration map. To note here is that a higher calibration
gain indicates a better performance of an analyzed calibration method [6].
In comparison to ECE calibration gains reflects the calibration capabilities of calibration methods making it

a very powerful ranking method. Furthermore, calibration gain is a dimensionality-independent method and
avoids the curse of dimensionality which affects.
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4 Post-hoc Calibration Methods

After introducing the general framework of calibration as well as methods to evaluate calibration we will
now give an overview over different post-hoc calibration methods. Therefore, we will first explore Isotonic
Regression (IR) and Temperature Scaling (TS) as common basic methods of post-hoc calibration. In a second
step we will explore recent mix-n-match extensions of IR and TS using ensemble techniques to enforce the three
properties elucidated earlier. As a last category we will elaborate a mix-n-match approach by composing basic
methods.

4.1 Calibration Basic Methods

4.1.1 Temperature Scaling

Temperature Scaling [1] is a parametric calibration method emerged as a single-parameter variant of Platt
scaling [4]. It can correct a monotonic disortion in the logits by multiplying the logits by a scalar before
applying softmax. This approach is summarized in the following calibration map:

T(zi)(l) = σ(si/t)(l) = (z
1/t
i )
(l)/|z1/t

i | (12)

where si are the logits of trained classifier, zi the predictive labels and t is the learnable parameter referred to as
the temperature of the calibration map. The optimal temperature for the calibration map is found by minimizing
negative log likelihood on the validation data set.
The introduced temperature parameter t can be interpreted as a measurement of the confidence level of a

classifier. A temperature of t = 1 corresponds to no possible calibration correction in the present scenario
indicating a well confidence. A temperature below 1 increases the estimated probabilities indicating that the
model was under-confident whereas a temperature above 1 shrinks the estimated probabilities indicating that the
model was over-confident. In the extreme case of t → ∞ every prediction has the same estimated probability
and the classifier has maximum uncertainty. In empirical studies Guo et al. [1] have shown that despite the
simplicity of the method it shows surprising effectiveness in various setups.

4.1.2 Isotonic Regression

IR is a non-parametric approach proposed by [5] as one of the first approaches for calibrating classifiers. The
basic implementation of IR is only applicable for binary classification. Therefore, we present later an extension
to multi-class classification.
In IR a calibration map is chosen from family of isotonic functions G. This function is determined by learning

a stepwise constant function T to transform uncalibrated outputs using pair-adjacent violators algorithm [13].
The idea is based on the intuition that the ordering of the classification scores implies information about the
certainty of a system. If enough calibration data is given IR is very powerful [14].

Algorithm 1 Pair-Adjacent Violators Algorithm to find optimal isotonic regression T∗(x)
Input: {xi} sorted by their classification scores zi = f (xi)
Output:stepwise constant function T∗(z)
Initialization: T(zi) = 0 f or xi = 0 and T(zi) = 1 f or xi = 1
while T(z) is not isotonic do

find pair-adjacent violators (zi−1, zi) with T(zi−1) > T(zi)
Replace with average T(zi−1) = T(zi) = T(zi−1) + T(zi)/2

end while
T∗(z) = T(z)

The algorithm to determine the isotonic regression function as the used calibration map is described in
Algorithm 1. In the worst-case N pair-adjacent violators (zi−1, zi) can be found resulting in a constant calibration
map representing maximum uncertainty of the classifier. In the best case the ordering of the classification scores
contains already all information and calibration can’t be improved with IR.
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Asmentioned earlier, this method is only applicable to binary classification. Therefore a multi-class extension
was proposed by [6] referred to in the paper as IROvA. Tomake IR applicable to multi-class classification with L
labels, the task of multi-class classification is decomposed into L binary one-versus-all classifications. Therefore
we learn a set of calibration maps {Tl}1,...,L differing for each class. Problematic with this approach is the lack
of accuracy preservation as well as the lack of data efficiency as the required amount of data scales linearly with
number of classes in the best case of a balanced dataset.

4.2 Mix-n-Match via Ensemble Techniques

4.2.1 Ensemble Temperature Scaling

Ensemble Temperature Scaling (ETS) was introduced as an extension of TS to enforce accuracy preservation,
data efficiency and high expressive power of the methods. The basic method TS is due to its amount of
parameters already very data-efficient and by construction accuracy-preserving but shows limited expressive
power compared to non-parametric methods. To improve the expressive power an ensemble of calibration maps
of the same type (see Equation 13) is used.

T(z) = w1T(z;Θ1) + · · · + wMT(z;ΘM ) (13)

Precisely, ETS uses a three-component ensemble weighting three TS calibration maps with different tem-
perature parameters (see Equation 14). The ensemble is build of the original TS calibration map T(z; t) =
(z1/t

1 , . . . , zL)/
∑L

l=1 z1/t
l

, a calibration map with t = 1 to increase stability if original classifier is well calibrated
and a calibration map with t →∞ to smooth the predictions.

T(z;w, t) = w1T(z; t) + w2z + w3
1
L

(14)

As with the basic method TS, this method is accuracy preserving by construction for wi ≥ 0, i ∈ {1, 2, 3}.
The data efficiency should be obtained when just adding three additional parameters but with this small amount
of additional parameters large expressivity is added to the calibration map as we will see in Section 5.

4.2.2 Multi-class Isotonic Regression

IRM [6] is an extension to IROvA enforcing accuracy preservation, data efficiency and high expressive power.
The data-efficiency issues of IROvA, the convential one-versus-all extension for IR, lies on the necessity to
learn L calibration maps. Especially for a large number of classes this approach needs a lot of calibration data
to represent a good fit. To address this problem IRM was proposed with the approach to learn one calibration
map over all classes and define the calibration map using the design scheme for accuracy preservation described
in Equation 4.
The following procedure is performed for learning a single strictly isotonic function g used for transforming

the classification scores. In a first step, the predictions and labels are ensembled to obtain a total of ncL data
samples denoted as the predictions a j ncL

j=1 and the corresponding labels bj ncL
j=1 . As in the initialization step of IR,

the set of predictions and labels are now sorted by their label-wise classification scores {a j}
ncL
j=1 . In a second

step, the isotonic function g∗ is learned by minimizing the squared error loss between g(a) and b over all ncL
data entries. We use here the same approach as in basic IR and apply the pair-adjacent violator algorithm to find
the best stepwise constant isotonic function. To apply the design scheme for accuracy preservation a strictly
isotonic function is required and thus, the learned function g∗ has to be modified to impose strict isotonicity.
Therefore a very small ε is used to add a linear term εa to the isotonic regression g∗ whenever strict isotonicity
is violated to defuse the violations. To summarize, this results in the following calibration map

ĝ(z) = g∗(z) + ε z

T(z) = (ĝ(z1), . . . , ĝ(zL)/
L∑
l=1

ĝ(zl)
(15)
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where z are predictions of the classifier, ε a small positive number to enforce strict isotonicity and g∗ the learned
isotonic regression based on the ensembled predictions a and labels b.
Reducing the problem to one calibration map instead of L calibration maps as it is handled in IROvA gives

a less expressive calibration but significantly improves data efficiency. This trade-off is referred to as the
efficiency-expressivity trade-off of IRM [6].

4.3 Mix-n-Match via Composition

The lack of expressivity in the parametric models and the lack of data-efficiency in non-parametric models yield
to the introduction of a mix-n-match via composition approach by Zhang et al. [6]. The general idea within this
approach is to combine the best of both worlds by composition of parametric and non-parametric methods.
The calibration map is defined as the composition

T(z) = Tnp(Tp(z)) (16)

where Tnp is the calibration map of a chosen non-parametric method and Tp is the calibration map of a chosen
parametric method.
Considering the three properties for calibrations this approach can benefit from the high expressive power

of non-parametric methods as well as the data efficiency of the parametric method. Accuracy preservation
is maintained if each of the composed methods are accuracy-preserving as the composition of two isotonic
functions remains isotonic.
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5 Comparison

In the following section we will compare the methods presented in Section 4 based on the results of [6].
Therefore, we will evaluate the different methods in two setups. In a first which is referred to in the literature
as the classical calibration evaluation setup the calibration performance is compared on a fixed sized dataset.
The second setup should evaluate the data-amount dependent behaviour referred to in the literature as learning
curve analysis [14].

Moreover, the methods will be evaluated on calibration tasks with varying complexity. The complexity of a
calibration depends on the complexity of the canonical calibration function π(z) and without deeper knowledge
about the calibration complexity it is assumed that the complexity depends on the model and data complexity
[6]. Therefore, the following combinations are defined as low, moderately and highly complex calibration tasks:

1. low complex calibration: low model complexity and low data complexity

2. moderately complex calibration: low model complexity but high data complexity and high model
complexity but low data complexity

3. highly complex calibration: high model complexity and high data complexity

In order to cover the aforementioned spectrums of complexity, the models were evaluated on CIFAR-10 with 10
class labels, CIFAR-100 with 100 class labels and ImageNet with 1000 class labels indicating the different levels
of data complexity. Further, the calibration methods were applied to different classification neural networks
such as DenseNet40, LeNet 5, ResNet 100, WideResnet 28-10 with varying model capacities to include the
aspect model complexity.
A general summary of the comparison based on the three properties accuracy-preserving, data efficiency and

high expressive power which we will explain in detail in the following sections is given in Table 1.

Method Accuracy-
preserving

Data efficiency Expressive power

TS yes good low
ETS yes good improved compared to TS

IR yes low high
IROvA no low high for large nc
IRM yes improved compared to IROvA lower than IROvA

IROVA-TS no better than non-parametric methods,
lower than parametric-methods

high

Table 1General overviewover reviewedmodels evaluated on properties accuracy-preserving, data efficiency and expressive
power grouped by type of calibration method (parametric, non-parametric, composition).

5.1 TS and ETS

The main motivation for introducing ETS as an extension of TS was to improve the expressive power of the
parametric method.

In Table 2 it is shown that ETS achieved for every combination of dataset and model at least the same top-
label ECE1 and outperformed it in most of the cases. On a fixed calibration dataset size ETS indeed achieves
higher expressive power compared to TS. The added expressive power to ETS by using an ensemble of different
temperature scalings sufficiently increased the performance and let ETS perform best over mostly all setups
presented in Table 2.
To further explore whether this is also the case for data-dependent behaviour Zhang et al. [6] evaluated the

methods as well on different amounts of calibration data. The results of this experiment visualized in Figure 3a
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Dataset Model Uncalibrated TS ETS IRM IROvA IROvA-TS

CIFAR-10 DenseNet 40 3.30 1.04 1.04 1.18 1.16 1.11
CIFAR-10 LeNet 5 1.42 1.16 1.13 1.19 1.26 1.26
CIFAR-10 ResNet 110 4.25 2.05 2.05 1.53 1.45 1.39
CIFAR-10 WRN 28-10 2.53 1.61 1.61 1.02 0.994 0.967

CIFAR-100 DenseNet 40 12.22 1.55 1.54 3.32 4.48 2.22
CIFAR-100 LeNet 5 2.76 1.11 1.05 1.33 3.67 3.18
CIFAR-100 ResNet 110 13.61 2.75 1.93 4.78 5.27 3.00
CIFAR-100 WRN 28-10 4.41 3.24 2.80 3.16 3.45 2.92

ImageNet DenseNet 161 5.09 1.72 1.33 2.13 3.97 3.01
ImageNet ResNeXt 101 7.44 3.03 2.02 3.51 4.64 3.09
ImageNet VGG19 3.31 1.64 1.36 1.85 3.77 3.03
ImageNet WRN 50-2 4.83 2.52 1.81 2.54 3.91 3.03

Table 2 Calibration errors of different calibration methods in classical calibration setup with fixed calibration dataset size
evaluated on top-label ECE1 as presented by [6].

show that the used ensemble of different temperature scalings added expressive power to ETS reducing the final
ECE by 16%. Additionally, adding three more parameters to the model did not decrease the data efficiency of
the method significantly which can be seen by the fast convergence of both methods.

5.2 IROvA and IRM

IRM as an extension to IROvA was introduced to improve the data-efficiency by learning one transforming
function g for all class instead of L different transforming functions. Regarding the design of the calibration
maps it can be said that IRM is accuracy-preserving whereas IROvA doesn’t fulfill this important property.
We will further explore in this section how this affected the other two properties data efficiency and expressive
power.
The expressive power can be evaluated in the standard setup as well as in the learning curve analysis reflecting

the data-dependent behaviour. As we can see in Table 2 IRM does not outperform IROvA in all setups and the
gap between the obtained ECEs varies over the different calibration taks. Especially it can be seen that for tasks
with increasing number of classes IRM performs better than IROvA indicating a better data efficiency.
The improvement in data efficiency of IRM over IROvA is visualized using learning curve analysis in Figure

3b where the ECE is plotted against the calibration dataset size. Additionally, the dataset size needed for
reaching a specific level of calibration error is emphasized in the plot. This plot especially highlights the high
boost in data efficiency and shows the fast convergence of IRM in ECE which is aspired.
By learning only one calibration map in IRM instead of L maps in IROvA a decrease in expressive power

was assumed. This decrease was visible in some of the experiments presented in [6] but this loss in expressive
power is small compared to the achieved improvement in data efficiency.

5.3 Basic Methods and Mix-n-Match via Composition

The intuition of introducing Mix-n-Match was to combine the best of both worlds. We will therefore study
in this section which effect composing IROvA and TS has on the overall performance of the calibration map.
Additionally, we will compare the performance to the extended methods ETS and IRM.
As mentioned before, accuracy preservation of a mix-n-match approach is only given if both of the composed

models are accuracy-preserving. Therefore, themix-n-match approachTS-IROvA [6] is not accuracy-preserving
and it requires a large calibration dataset to achieve the same accuracy as the uncalibrated classifier (see Figure 4.
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(a) Expressive power of TS and ETS based on
final ECE

(b) Data efficiency of IRM, IROvA and IROvA-
TS based on needed calibration dataset size to
reach equal calibration error

Figure 3 Comparison of learning curves of mix-n-match approaches and basic approaches as given in [6]

Figure 4Learning curve analysis plotting accuracy towards calibration dataset for IROvA and IROvA-TS and as a reference
the accuracy-preserving baseline classifier [6].

Indeed, it can be said that the composition does not affect the accuracy-preserving property of the non-parametric
approach.

In a next step, we will evaluate whether the composition improved the data-efficiency properties compared
to the non-parametric methods and how it affected the expressive power of the calibration. To assess this, the
learning curves as presented in [6] are analyzed. The data-amount dependent behaviour covers data efficiency
of a method as well as expressive power of a method. Data efficiency is reflected in the learning curves as fast
convergence in ECE and can be compared over methods for a fixed ECE. As shown in 3b the data efficiency
of TS-IROvA has improved compared to the basic approach IROvA but the data-efficiency of IRM cannot be
reached. Overall, the convergence of IROvA-TS compared to IROvA stays the same but it converges at a lower
ECE indicating better calibration.
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Figure 5 Learning cure analysis plotting ECE towards calibration dataset for all presented methods to assess data-amount
dependent behaviour as presented in [6]. Data complexity increases from left to right.

Finally, expressive power of the mix-n-match approach will be analyzed. As shown in Figure 5 IROvA-TS
outperforms all other methods in the final ECE score after convergence. The gap between the different methods
increases with increasing data complexity resulting in the conclusion that mix-n-match is especially powerful
for calibration tasks with high data complexity.
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6 Conclusion

In this report we examined different post-hoc calibration methods. Based on the proposed properties by [6]
and the necessity of these we compared the post-hoc calibration methods in different scenarios. It has been
shown that the lack of expressivity in TS and lack of data efficiency in IROvA can be compensated by different
ensemble techniques in calibration. Additionally, composition of non-parametric and parametric methods have
shown improvement over using a single non-parametric method but was not as promising as the ensemble
techniques.

In general, the choice of the calibration method depends on the model and data complexity and parametric
and non-parametric are suitable for different purposes. If calibration is applied in a data-limited regime where
high data-efficiency is important parametric methods are preferred over non-parametric methods. However, in
data-rich regimes where the focus is especially on achieving very good calibration non-parametric calibrations
can be applied. The mix-n-match approach via composition outperformed the other methods only in regard to
expressive power for a very large calibration dataset. However, this approach seems promising if a calibration
task requires high expressive power due to its complexity and data amount is limited.
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