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Abstract

This report takes a look into the architectures of three models that deal
with time series data. The models are IndRNN [S. Li, W. Li, Cook, Zhu, et
al. 2018], Transformer [Vaswani et al. 2017], and Transformer-XL [Dai et al.
2019]. The models are compared with RNNs and LSTMs, which are the de
facto standard for dealing with sequential data.

1 Introduction
It has been established that when it comes tomodeling data of a sequential nature,
a RNN offers a clear architectural advantage over a standard feed-forward neural
network. The structure of a RNN takes previous elements of a sequence into
consideration when processing any element of a sequence. However, RNNs suffer
from some well-known issues:

• Vanishing and exploding gradients. In the first case, the gradients go to
zero exponentially fast, which results in halting the training. In the sec-
ond case, the gradients go to infinity exponentially fast, which results in
the network being unstable. Both issues are due to the recurrence, which
involves multiplying the back-propagation gradient several times.

• Long sequences. If a sequence requires an element to draw a connection
to another element that appears much earlier in the sequence, which is
common in NLP tasks, RNNs suffer to model such dependencies.

LSTMs are RNNs. However, a LSTM cell includes a cell state and several gates.
That makes it more capable of establishing longer-term dependencies. Neverthe-
less, LSTMs also suffer from some well-known issues:

• LSTMs deals with the problem of vanishing gradients better than standard
RNNs. However, they do not remove the problem completely.
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• Training LSTMs is time-consuming and requires a lot of resources.
• Some NLP tasks require to establish longer-term dependencies that go be-
yond the capacity of LSTMs.

RNNs input data need to be passed sequentially one after the other, which
is time-consuming. In a Transformer model, the input sequence can be passed
in parallel. The Transformer replaces recurrence with Attention. Attention is a
mechanism that assigns for each element in 5 a sequence a score with respect
to all elements in the sequence. That score indicates how helpful would another
elements be in encoding the current element of interest. This introduces the pos-
sibility of using GPUs for parallelism which makes it a much faster model.
When using a Transformer model in the context of language modeling, the

naive chunking of sequences into fixed-size segments results in a problem known
as context fragmentation. Transformer-XL implemented a recurrent connection
between segments which solved this issue.
IndRNN introduced a RNN where neurons in a layer are independent of each

other, which simplified the RNN architecture. This resulted in a simpler gradient
computation, and easier regulation of the recurrent weights, thus tackling the
vanishing and exploding gradient issues.

2 Related Work
When it comes to training RNNs, one issue is particularly dominant. That issue is
gradient vanishing and exploding. To address this issue, variants of RNNs have
been proposed. The LSTM [Hochreiter and Schmidhuber 1997] and the Gated
Recurrent Unit (GRU) [Cho et al. 2014] are two popular ones. Both LSTM and
GRU employ a recurrent connection along the time steps, and gates to regulate
information flow through the network. However, the reliance on gates makes
the network computationally complex and not parallelizable. Quasi-Recurrent
Neural Network [Bradbury et al. 2016] applies convolutional layers in parallel
across time steps, fixing the recurrent connections. This strategy greatly simpli-
fies the computational complexity, but it reduces its capability since the recurrent
connections are no longer trainable.
The Transformermodel aimed to reduce sequential computation. Othermodels

with the same goal are ByteNet [Kalchbrenner et al. 2017] and ConvS2S [Gehring
et al. 2017]. Both models compute hidden representations in parallel for all input
and output positions using CNNs. For these models, it is difficult to learn depen-
dencies between distant positions, because the number of operations required to
relate signals from two arbitrary input or output positions grow as the distance
between positions increases. It grows linearly for ConvS2S and logarithmically
for ByteNet. For a Transformer, however, this cost is reduced to a constant num-
ber of operations.
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When it comes to language modeling, context is of extreme importance. Some
papers explored feeding networks a representation of a wider context as an input.
[Mikolov and Zweig 2012] manually defines the context representations. It uses
a contextual real-valued input vector in association with each word, to convey
contextual information about the sentence being modeled. [Dieng et al. 2016]
relies on document-level topics learned from data. It directly captures the global
semantic meaning, relating words in a document via latent topics.

3 Time Series Data
Time series data do not follow the common assumption needed for most machine
learning data sets. Time series data samples are not independent and identically
distributed. Each sample is dependent on the previous one. Traditional neural
networks can not model this dependence between samples. However, RNNs can.

3.1 RNNs
Recurrent neural networks (RNNs) are a class of neural networks that incorporate
the concept of time into its structure. It is designed such that a single sample is
a sequence. The term that describes the number of elements in that sequence is
called the time steps.

Figure 1: RNNs have a recurrent connection (Image credit goes to Understanding
LSTM Networks 2015)

A RNN has a recurrent connection where the previous hidden state is an input
to the current state. The update of states can be described as follows:

ht = σ(Wxt + Uht−1 + b) (1)

where xt ∈ RM and ht ∈ RN are the input and hidden state at time step t,
respectively. W ∈ RN×M , U ∈ RN×N and b ∈ RN are the weights for the
current input and the recurrent input, and the bias of the neurons, respectively.
σ is an element-wise activation function of the neurons, and N is the number of
neurons in this RNN layer [S. Li, W. Li, Cook, Zhu, et al. 2018].
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Figure 2: An unrolled RNN layer (Image credit goes to Understanding LSTM Net-
works 2015)

Shown above is a RNN, or a single-layer RNN. A RNN layer is composed of τ
RNN cells, where τ indicates the number of time steps and each RNN-cell takes
in the input corresponding to a specific time step and the hidden state of the
previous RNN-cell.

Figure 3: Stacked RNN (Image credit goes to Pytorch [Basics] — Intro to RNNs
2020)

A Stacked RNN is formed by vertically stacking RNNs, or single-layer RNNs
on top if each other.
The main limitation of RNNs is that they are not capable of learning long term

dependencies. Asmentioned before, a single input to a RNN is a sequence of a size
equal to the number of time steps. At each time step, we have an element. Now,
if we are dealing with a long sequence, it becomes hard for a RNN to connect an
element that appears late in the sequence to an element that appears much earlier.
To tackle this issue, Long Short TermMemory (LSTM) networks were introduced.
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LSTM solves complex, artificial long time lag tasks that have never been solved
by previous recurrent network algorithms [Hochreiter and Schmidhuber 1997].

3.2 LSTMs
LSTMs are a special kind of RNNs capable of learning long-term dependencies.
All RNNs have the form of a chain of repeating modules. In standard RNNs,
this repeating module has a single neural network layer with a simple activation
function like the tanh.

Figure 4: The repeating module of a RNN (Image credit goes to Understanding
LSTM Networks 2015)

Like standard RNNs, LSTMs have the same chain-like structure of repeating
modules. However, the repeating module has four different layers interacting
together.

Figure 5: The repeating module of a LSTM (Image credit goes to Understanding
LSTM Networks 2015)

The main feature of a LSTM cell is the cell state. The cell state runs down the
entire layer connecting cells of the layer. The cell state is modified byminor linear
interactions, which allows for information to easily flow through it.
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Figure 6: LSTM Cell State (Image credit goes to Understanding LSTM Networks
2015)

The first step in a LSTM cell is to decide based on the current input and the
previous hidden state, how much of the previous cell state should be kept. This is
achieved by using a sigmoid activation. The previous cell state is then multiplied
by output of the sigmoid.

Figure 7: Forget Gate Layer (Image credit goes to Understanding LSTM Networks
2015)

The second step is to decide on the information we want to add to the cell state,
and how much of it would we like to add. That is, based on the current input and
the previous hidden state, by using a sigmoid activation decide on how much
information, and by using a tanh activation, decide on what information to add
to the cell state.

Figure 8: Input Gate Layer and Cell Update Layer (Image credit goes to Under-
standing LSTM Networks 2015)

The third and final step is to decide on what to output as a hidden state. The
cell state is passed through a tanh layer and the output is multiplied by the factor
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generated by the sigmoid layer when the current input and previous hidden state
are passed to it.

Figure 9: Ouput Gate and Output Hidden State (Image credit goes to Understand-
ing LSTM Networks 2015)

4 Transformer
The Transformer model was proposed by [Vaswani et al. 2017]. It was mainly
introduced to deal with Seq2Seq problems. That is, taking a sequence as an input,
and returning a sequence as an output. The Transformer uses an Attention mech-
anism which eliminates the recurrence required in RNNs and allows the model
to employ parallelism.
The go-to architecture for dealing with Seq2Seq problems is illustrated in the

figure below. For this section, machine translation will be used as a running
example of Seq2Seq problems.

Figure 10: Machine translation as an example of a Seq2Seq problem (Image credit
goes toThe Illustrated Transformer 2018)
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Tackling a Seq2Seq problem using a RNN architecture is illustrated in the figure
below.

Figure 11: Seq2Seq problem using an RNN architecture (Image credit goes to
Transformer Neural Networks - EXPLAINED! (Attention is all you need) n.d.)

RNNs input data need to be passed sequentially or serially one after the other.
We need inputs of the previous state to make any operations on the current state.
Such sequential flow does not make use of today’s GPUs very well, which are
designed for parallel computation. We need to make use of parallelization for
sequential data.
The figure below shows the Transformer architecture.
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Figure 12: Transformer Architecture (Image credit goes to Vaswani et al. 2017)

The Transformer neural network architecture employs an encoder-decoder ar-
chitecture much like RNNs. The difference is that the input sequence can be
passed in parallel. Consider translating a sentence from French to English. With a
RNN encoder we pass an input French sentence one word after the other. The cur-
rent word’s hidden state has dependencies on the previous word’s hidden state.
Thewords embeddings are generated one time step at a time. With a Transformer
encoder on the other hand there is no concept of time step for the input we pass
in all the words of the sentence simultaneously and determine the words embed-
dings simultaneously.
The figure below illustrates how the Transformer stacks the encoders and de-

coders. Each encoder and decoder in the figure below contains the components
shown in the previous figure. The encoding component is a stack of six encoders,
and the decoding component is a stack of decoders of the same number.
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Figure 13: Encoder and Decoder stack in a Transformer (Image credit goes toThe
Illustrated Transformer 2018)

A word embedding is a technique used to represent a word as a fixed size vec-
tor. Every word is mapped to a point in space where similar words in meaning
are physically closer to each other, this space is called an embedding space. This
embedding space maps a word to a vector but the same word in different sen-
tences may have different meanings. This is where positional encoders come in.
It is a vector that has information on distances between words and the sentence.
The paper uses a sine and cosine function to generate this vector. After passing
the French sentence through the input embedding and applying the positional
encoding, we get word vectors that have positional information. The encoded in-
put is then passed to the Multi-Head Attention block. The Multi-Head Attention
block combines the output from eight Self-Attention blocks.
For the following illustrations we use Self-Attention blocks to explain the con-

cepts behind it. The actual architecture uses Multi-Head Attention blocks instead.
The encoder’s inputs first flow through a Self-Attention layer. The outputs of

the Self-Attention layer are then fed to a feed-forward neural network. The de-
coder has both those layers, but between them is an Encoder-Decoder Attention
layer that helps the decoder focus on relevant parts of the input sentence.
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Figure 14: Encoder and Decoder Internal Layers (Image credit goes to The Illus-
trated Transformer 2018)

To understand the concept of Attention, lets a take a look at an example. Con-
sider the following sentence: “The animal didn’t cross the street because it was
too tired”. Attention is a mechanism that assigns for each word in a sentence a
score with respect to all words in the sentence. That score indicates how helpful
would another words be in encoding the current word of interest. The figure be-
low shows the Attention scores of the word “it” with respect to all words in the
sentence.

Figure 15: Attention Example (Image credit goes to The Illustrated Transformer
2018)
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Figure 16: Computing the Queries, Keys, and Values (Image credit goes to The
Illustrated Transformer 2018)

The figure above shows the first step of computing Self-Attention. For the ex-
ample sentence above “ThinkingMachines”. Each word is represented as a vector,
and for each vector three other vectors are computed. Namely, the query, key,
and value. They are computed by applying a word vector to each of the query,
key, and value matrices. The query, key, and value vectors values are determined
by the matrix multiplication with weight matrices to be learned. The way At-
tention is computed using these vectors explains the name of each vector. The
illustration above shows the query, key, and value vectors with a smaller dimen-
sionality than the embedding vector. Their dimensionality in the paper is 64,
while the embedding and encoder input/output vectors have dimensionality of
512. This is an architecture choice to make the computation of the Multi-Head
Attention constant.
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Figure 17: Self-Attention Example (Image credit goes to The Illustrated Trans-
former 2018)

The figure above shows how to compute Self-Attention for the word “Thinking”
in the sentence “Thinking Machines”. After computing the query, key, and value
vectors, we compute a dot product of the query and key vectors. Recall that the
dot product of two vectors indicates how similar the two vector are. That is, we
are getting a score that represents how similar the query and key vectors are. The
score is then divided by 8 (the square root of the dimension of the key vectors used
in the paper – 64). This leads to having more stable gradients. Softmax is then
applied to normalize the scores so they’re all positive and add up to 1.
The value vectors are then multiplied by the softmax score. The intuition be-

hind doing that is to keep the values of words we want to focus on significant and
drown out the values of other irrelevant words. The weighted value vectors are
then summed up. This final vector represents the Self-Attention vector. The ex-
ample illustrated in the figure shows the computation of the Self-Attention vector
for the first word.
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The example illustrated above showed the computation for one word using
vectors. In reality, matrix multiplication is used and all words of a sentence are
combined in a matrix.
That was the Self-Attention block. The Multi-Head Attention block combines

eight Self-Attention blocks to allow the attention vectors of a word to focus on
other words also, instead of only focusing on itself. This mechanism provides
multiple “representation subspaces”. The Multi-Head Attention block has a set of
eight query/key/value weight matrices. Each of these sets is randomly initialized.
Then, after training, each set is used to project the input embeddings (or vectors
from lower encoders/decoders) into a different representation subspace.
The figure below shows how a Multi-Head Attention block combines the eight

Self-Attention blocks.

Figure 18: Multi-Head Attention (Image credit goes toThe Illustrated Transformer
2018)

After encoding, comes decoding. The encoder component starts by processing
the input sequence. The output of the top encoder in the encoders stack is then
transformed into a set of attention vectors K (keys) and V (values). These are to
be used by each decoder in its “encoder-decoder attention” layer which helps the
decoder focus on appropriate places in the input sequence. The decoding phase
outputs an element of the output sequence one by one until it outputs a special
token indicating the end of sentence. The output of each decoding step is fed to
the bottom decoder after passing through word embedding and positional encod-
ing. The Self-Attention layers in the decoder operate in a slightly different way
than the one in the encoder. The paper calls the attention block in the decoding
side masked attention block. It is named as such because while generating the
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next output word we can use all the words from the input sentence but only the
previous words of the output sentence. If we are going to use all the words in
the output sentence, then there would be no learning it would just spit out the
next word. So, while performing parallelization with matrix operations we make
sure that the matrix will mask the words appearing later so the attention network
can’t use them.

The “Encoder-Decoder Attention” layer works just like Multi-Head Attention,
except it creates its queries matrix from the layer below it, and takes the keys and
values matrices from the output of the encoder stack.

The figure below illustrates a step in the decoder translation of the sentence
“Je suis étudiant” in French to “I am a student<EOS>” in English.

Figure 19: Decoder Stack in Action (Image credit goes to The Illustrated Trans-
former 2018)

To finally go from the output vector of the decoders to a word, the output vec-
tor goes through the linear layer, which is a fully connected neural network the
outputs a logits vector. The logits vector is of size equal to the number of words
the model learned from the training dataset. Each element of the logits vector
corresponds to the score of a unique word. The softmax layer then transforms
the logits scores into probabilities. The element with the highest probability is
chosen, and the word associated with it is produced as the output for this time
step. The figure below illustrates an example.
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Figure 20: From Decoder Output to Final Output (Image credit goes to The Illus-
trated Transformer 2018)

5 Transformer-XL
Transformer-XL (meaning extra-long) was introduced by [Dai et al. 2019] to deal
with the language modeling problem. Language modeling is the task of assigning
a probability to sentences in a language. Language models also assign a probabil-
ity for the likelihood of a givenword (or a sequence of words) to follow a sequence
of words. Language modeling is particularly difficult, because it requires model-
ing long-term dependencies. When it comes tomodeling long-term dependencies
in sequential data, RNNs, despite being the standard solution to language mod-
eling, are difficult to optimize due to gradient vanishing and explosion. LSTMs
are better, but LSTMs are not sufficient to fully address this issue. On the other
hand, the direct connections between long-distance word pairs built in attention
mechanisms might ease optimization and enable the learning of long-term de-
pendencies.
[Al-Rfou et al. 2018] tackles the language modeling problem using Transform-

ers. Training is performed on separated fixed-length segments of a few hundred
characters. Without any information flow across segments, the model cannot
capture any long-term dependencies beyond the fixed context length. Moreover,
the fixed-length segments are constructed by choosing a consecutive chunk of
symbols without paying attention to the sentence or semantic boundaries. This
problem is referred to as context fragmentation. The model lacks necessary con-
textual information needed to accurately predict the first few symbols, leading to
inefficient optimization and inferior performance.
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Tranformer-XL mainly offers two contributions. The first is the segment-level
recurrence mechanism. Tranformer-XL introduces the notion of recurrence by
reusing the hidden states obtained from the previous segment instead of com-
puting the hidden states from scratch for each new segment. A recurrent con-
nection between the segments is built by reusing the previous hidden state as a
memory for the current state. Through these recurrent connections, information
flows allowing long-term dependencies to be modeled. Tranformer-XL resolves
the context fragmentation problem, because it is able to pass information from
the previous segments to the current segment. The second is a novel positional
encoding scheme. To avoid temporal confusion when reusing states, relative po-
sitional encodings rather than absolute ones are used to generalize to attention
lengths longer than the one observed during training.

The task of languagemodeling is to estimate the joint probability of a given cor-
pus of tokens x = (x1, . . . , xT ). The joint probability is P (x) =

∏
t P (xt|x<t).

The standard neural approach is to model the conditional probability. Specifi-
cally, a neural network is used to encode the context x<t into a fixed size hidden
state, which is multiplied with the word embeddings to obtain the logits. We
then get a probability distribution over the next token by passing the logits to a
Softmax function.
[Al-Rfou et al. 2018] tackles the language modeling problem by splitting the

corpus into fixed-size segments, and only train the model within each segment,
ignoring all contextual information from previous segments. This paper calls this
model the “vanilla model”. Following this training scheme does not allow infor-
mation to flow across segments in both forward and backward passes. By us-
ing a fixed-length context, the vanilla model suffers from two critical limitations.
First, the model cannot establish any dependency that is longer than the segment
length. Second, the naive chunking of the corpus into segments results in context
fragmentation. The evaluation step of the vanilla model is performed by process-
ing a segment of the same length used in training, and onlymaking a prediction at
the last position. Too generate the next prediction, the segment is shifted to the
right by one position, and that new segment has to be processed from scratch.
Obviously, this evaluation procedure is very expensive. It does that though to
ensure that each prediction utilizes the longest possible context exposed during
training. The evaluation phase also suffers from context fragmentation. The figure
below shows the training and evaluation phases of the vanilla Transformer.
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Figure 21: Vanilla Model with a Segment Length of Size 4 (Image credit goes to
Dai et al. 2019)

Transformer-XL introduces a recurrencemechanism tomitigate the limitations
of a fixed-length context. When processing a segment, the previous segment’s
hidden state is fixed and cached to be reused as an extended segment. However,
there is no recurrent back propagation. Unlike a RNN, the back propagation does
not flow through the time steps. The previous segment is only used in the for-
ward pass. Even though the gradient does not flow back to the previous segment,
using the previous hidden state as an additional input allows the network to ex-
ploit information from the past. This equips the model with better capabilities of
modeling longer-term dependencies and avoiding context fragmentation.

Formally, let the two consecutive segments of lengthL be sτ = (xτ,1, . . . , xτ,L)

and sτ+1 = (xτ+1,1, . . . , xτ+1,L) respectively. Denoting the n-th layer hidden
state sequence produced for the τ -th segment sτ by hnτ ∈ RL×d, where d is the
hidden dimension. Then, then-th layer hidden state for segment sτ+1 is produced
(schematically) as follows,

h̃n−1
τ+1 =

[
SG

(
hn−1
τ

)
◦ hn−1

τ+1

]
,

qnτ+1, k
n
τ+1, v

n
τ+1 = hn−1

τ+1W
⊤
q , h̃

n−1
τ+1W

⊤
k , h̃

n−1
τ+1W

⊤
v ,

hnτ+1 = Transformer − Layer
(
qnτ+1k

n
τ+1, v

n
τ+1

) (2)

where the function SG(·) stands for stop-gradient, the notation [hu · hv] in-
dicates the concatenation of two hidden sequences along the length dimension,
and W denotes model parameters. Compared to the standard Transformer, the
critical difference lies in that the key knτ+1 and value vnτ+1 are conditioned on the
extended context h̃n−1

τ+1 and hence hn−1
τ cached from the previous segment. [Dai

et al. 2019]

Figure 22: Transformer-XL with a Segment Length of Size 4 (Image credit goes
to Dai et al. 2019)
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A segment-level recurrence is created in the hidden states because of the recur-
rence mechanism that is applied to every two consecutive segments of a corpus.
Analogous to the concept of the receptive field in convolutional layers, the ef-
fective context utilized can go beyond just two segments. Unlike the same-layer
recurrence in conventional RNN-LMs, the recurrent dependency between hnτ+1

and hn−1
τ shifts one layer downwards per-segment. As a result, the largest pos-

sible dependency length grows linearly w.r.t. the number of layers as well as the
segment length, i.e., O(N × L), as visualized by the shaded area in figure 22(b).
This recurrence scheme also facilities significantly faster evaluation. Unlike the
vanillamodel that re-computes every segment from scratch, Transformer-XL uses
the cached representations of the previous segments.
The problem with reusing the previous segments is that the positional encod-

ings would not be coherent. For example, if the previous segment has the follow-
ing contextual positions: [0, 1, 2, 3], when a new segment is processed, the con-
textual positions for the combination of the two segmentswould be [0, 1, 2, 3, 0, 1, 2, 3].
Clearly, the semantics of each position id is incoherent throughout the combined
sequence. To deal with this issue, Transformer-XL introduces a novel relative po-
sitional encoding scheme. Recall the computation of the attention score shown
in figure 23.

Figure 23: Attention Score Computation (Image credit goes to The Illustrated
Transformer 2018)

In the novel positional encoding scheme introduced in Transformer-XL, the
simple multiplication of (Qi × Kj) is expanded to include four terms. The first
term represents the content weight, that is the original (Qi ×Kj). Keep in mind
that up to this point there is no positional encoding. The usual positional encod-
ing applied on the input before going through the encoder stack is not applied.
The second term is a positional bias with respect to the current query (Qi). Qi is
encoding information about the current token. The positional bias termmeasures
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the distance between the tokens i and j, instead of using the absolute position of
the current token. Recall that positional encoding in the Transformer model uses
a sinusoidal function that takes in the absolute position of a token. However, in
Transformer-XL, the sinusoidal function takes in distance between tokens. The
third term is a learned global content bias. The model adds a learned vector that
measures the importance of the other token content. The fourth and final term is
a learned global bias. It is also a learned vector, but it measures the importance
based only on the distance between the tokens.

6 IndRNN
Independently Recurrent Neural Network (IndRNN)was proposed by [S. Li, W. Li,
Cook, Zhu, et al. 2018] with an new architecture, where neurons in the same layer
are independent of each other and are instead connected across layers. RNNs
are diffcult to train, because of the gradient vanishing and exploding problem,
which is caused by the recurrent connections with repeated multiplication of the
recurrent weight matrix. Moreover, a RNN-cell within a RNN-layer applies the
same activation shown in equation (1). This means that each neuron within a
RNN-cell has a recurrent connection to all other neurons of the previous hidden
state. This dependence makes it difficult to understand and interpret the patterns
each neuron responds to without considering the other neurons. Additionally,
because of the recurrent connections, with each time step, matrix multiplication
is computed. Due to the recurrence, this computation can not be parallelized.
This results in a very time-consuming process when the RNN deals with a big
number of time steps.
IndRNN processes the recurrent inputs as follows:

ht = σ(Wxt + u⊙ ht−1 + b) (3)

where xt ∈ RM and ht ∈ RN are the input and hidden state at time step t,
respectively. W ∈ RN×M , u ∈ RN and b ∈ RN are the weights for the current
input and the recurrent input, and the bias of the neurons, respectively. ⊙ is the
Hadamard product, σ is an element-wise activation function of the neurons, and
N is the number of neurons in this RNN layer. Compared with the traditional
RNN where the recurrent weight U is a matrix and processes the recurrent input
using matrix product, the recurrent weight u in IndRNN is a vector and processes
the recurrent input with element-wise vector product. Each neuron in one layer
is independent from others, thus termed as “independently recurrent”. For the
n-th neuron, the hidden state hn,t can be obtained as:

hn,t = σ(wnxt + unhn,t−1 + bn) (4)
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here wn, un and bn are the n-th row of the input weight, recurrent weight and
bias, respectively [S. Li, W. Li, Cook, Zhu, et al. 2018].

The Hadamard product is element-wise matrix multiplication. It can only be
applied on matrices with same dimension. For vectors, it is an element-wise vec-
tor product. The figure below schematically demonstrates the difference in the
recurrent connections between traditional RNNs and IndRNN.

Figure 24: Illustration of a conventional simple RNN and the proposed IndRNN
unfolded in time. Each solid dot represents a neuron in a layer and each line
represents a connection. (Image credit goes to S. Li, W. Li, Cook, Gao, et al. 2019)

This new formulation results in the following advantages when compared to
traditional RNNs:

• IndRNN is able to process longer sequences. The recurrent weights u are
regulated, which solves the gradient vanishing and exploding problem. Ex-
periments showed that IndRNN is capable of dealing with sequences with
over 5000 time steps.

• Unlike traditional RNNs, we can use a non-saturated activation function
such as theReLU . This results in better behaved gradient back propagation
through time.

• Neurons within an IndRNN layer can be interpreted easily. This is due
to the independence between neurons in each layer. Every neuron’s be-
haviour can be interpreted individually.

• IndRNN offers reduced complexity. The matrix product applied on recur-
rent connections is replaced with element-wise vector product, which is
much more efficient.
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The gradient back propagation through time for neurons in and IndRNN layer
can be performed independently for each neuron, because the neurons in each
layer are independent of each other. Ignoring the bias, the activation for the n-th
neuron is hn,t = σ(wnxt+unhn,t−1). Let Jn be the objective to be minimized at
time step T . Assume the time steps follow the following order [1 . . . t . . . T . . .].
The gradient back propagated to the time step t is shown below.

∂Jn
∂hn,t

=
∂Jn
∂hn,T

∂hn,T
∂hn,t

=
∂Jn
∂hn,T

T−1∏
k=t

∂hn,k+1

∂hn,k

=
∂Jn
∂hn,T

T−1∏
k=t

σ′
n,k+1un =

∂Jn
∂hn,T

uT−t
n

T−1∏
k=t

σ′
n,k+1

(5)

where σ′
n,k+1is the derivative of the element-wise activation function.

The gradient involves three terms. The first is mainly influenced by the objec-
tive function, the second is an exponential term of a scalar value un which can be
easily regulated, and the third is the and the gradient of the activation function
which is often bounded in a certain range. In a traditional RNN, this gradient
is ∂J

∂hT

∏T−1
k=t diag(σ′(hk+1))U

T where diag(σ′(hk+1)) is the Jacobian matrix of
the element-wise activation function.
The gradient of IndRNN is directly dependent on the recurrent weight (un)

which is changed by a small magnitude according to the learning rate. On the
other hand, the gradient of a RNN directly depends on a matrix product, which is
mainly determined by its eigenvalues and can be changed significantly even if the
change to each matrix entries is small [S. Li, W. Li, Cook, Zhu, et al. 2018]. This
equips IndRNN with a more robust training when compared with a traditional
RNN.
By regulating the exponential term uT−t

n

∏T−1
k=t σ′

n,k+1 to an appropriate range,
and ignoring the gradient back propagated from the objective at time step T , the
gradient exploding and vanishing problem over time can be solved.

7 Results
This section take a look at some of the experiments carried out by each paper that
introduced the models.

7.1 Transformer
The Transformer model was tested on the WMT 2014 English-to-German trans-
lation task, and the WMT 2014 English-to-French translation task. The metrics
used in this benchmark are BLEU (bilingual evaluation understudy) and FLOPS
(floating point operations per second). BLEU evaluates the quality of machine-
translated text from one language to another [BLEU n.d.]. Higher is better. FLOPS
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measures computer performance in making computations that require floating-
point calculations [FLOPS n.d.]. Lower is better. [Vaswani et al. 2017] estimated
the number of floating point operations used to train a model by multiplying the
training time, the number of GPUs used, and an estimate of the sustained single-
precision floating-point capacity of each GPU. At the time of its introduction,
the Transformer model achieved state-of-the-art results in that benchmark. The
figure below shows that benchmark results.

Figure 25: WMT 2014 English-to-German andWMT 2014 English-to-French (Im-
age credit goes to Vaswani et al. 2017)

7.2 Transformer-XL
The Transformer-XL was tested on both word-level and character-level language
modeling datasets.
WikiText-103 is the largest available word-level languagemodeling benchmark

with long-term dependency. The results on that benchmark is shown in the figure
below.
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Figure 26: WikiText-103 (Image credit goes to Dai et al. 2019)

The metric for that benchmark is perplexity. Perplexity measures how well
a probability model predicts a sample [Perplexity Intuition (and its derivation)
n.d.]. Lower is better. At the time of its introduction, the Transformer-XL model
achieved state-of-the-art results in that benchmark.
enwik8 is a character-level language modeling benchmark. The results on that

benchmark is shown in the figure below.

Figure 27: enwik8 (Image credit goes to Dai et al. 2019)

The metric for that benchmark is BPC (Bits-per-character). BPC measures the
average number of bits needed to encode on character [Evaluation Metrics for
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Language Modeling n.d.]. Lower is better. At the time of its introduction, the
Transformer-XL model achieved state-of-the-art results in that benchmark.

7.3 IndRNN
An experiment used to showcase the IndRNN’s speed is the adding problem. In
the adding problem, the input is two sequences of the same length. The first
sequence values are randomly sampled from a uniform [0, 1] distribution. The
second sequence contains two entries with the value one, and the rest are ze-
ros. The output is the sum of the two entries in the first sequence indexed by the
entries where the values are one in the second sequence. To show the compatibil-
ities of modeling long-term memory, the experiment was applied with sequence
lengths of 100, 500, and 1000. The RNN models included in the experiments for
comparison are the traditional RNN with tanh, LSTM, and IRNN.

Figure 28: Adding Problem (Image credit goes to S. Li, W. Li, Cook, Zhu, et al.
2018)

For (T=100), all models except the RNN converged. For (T=500), the LSTM takes
more time to converge compared with the IndRNN. The IRNN takes even longer,
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and does not fully converge. For (T=1000), the IRNN and LSTM can no longer
converge. The IndRNN, however, manages to converge to a small loss value very
quickly. Even for (T=5000), the IndRNN manages to converge in a reasonable
time.

8 Models Comparison
8.1 RNN vs LSTM
RNNs are flexible. What facilities this flexibility is the usage of time steps at each
layer. By varying the number of time steps considered at the input and output
layers, one can formulate different types of problems. Namely, one-to-one, one-
to-many, many-to-one, and many-to-many.

Figure 29: Flexibility of RNNs. (Image credit goes to The Unreasonable Effective-
ness of Recurrent Neural Networks 2015)

A LSTM is a RNN. Whatever applies in terms of functionality to a RNN also
applies to a LSTM. Afterall, a LSTM-cell is just a more complex RNN-cell. One
with several gates.

8.2 RNN vs IndRNN
In terms of functionalities, an IndRNN is still a RNN. They share the same func-
tionalities. The IndRNN offers the following advantages over a standard RNN:

• IndRNN is able to process longer sequences. The recurrent weights u are
regulated, which solves the gradient vanishing and exploding problem. Ex-
periments showed that IndRNN is capable of dealing with sequences with
over 5000 time steps.

• Unlike traditional RNNs, we can use a non-saturated activation function
such as theReLU . This results in better behaved gradient back propagation
through time.

• Neurons within an IndRNN layer can be interpreted easily. This is due
to the independence between neurons in each layer. Every neuron’s be-
haviour can be interpreted individually.



Time Series Analysis

Table 1: Summary of advantages and disadvantages of RNNs and LSTMs

Advantages Disadvantages
RNNs • Can deal with sequential data

• Flexible problem formulation
• Slow training
• Vanishing and exploding gra-
dient

• Can not model long sequences

LSTMs • Can model longer sequences
when compared with a stan-
dard RNN

• Does not suffer from vanish-
ing and exploding gradient as
much as a standard RNN

• Slow training
• Some sequences are too long
for LSTMs

• IndRNN offers reduced complexity. The matrix product applied on recur-
rent connections is replaced with element-wise vector product, which is
much more efficient.

8.3 RNN vs Transformer
The Transformer’s attention mechanism offers the following advantages over a
standard RNN:

• RNNs input data need to be passed sequentially. We need inputs of the
previous state to make any operations on the current state. However, with
Attention, the entire input can be passed at once.

• With RNNs, the direct connection is between a time step and the previous
one. However, with attention, an attention score is computed for each ele-
ment in the input sequence with respect to all other elements in the input
sequence.

8.4 Transformer vs Transformer-XL
We use the context of language modeling to compare between the vanilla Trans-
former [Al-Rfou et al. 2018] and Transformer-XL [Dai et al. 2019]. The vanilla
Transformer model suffers from the following limitations:

• Training is applied on separated fixed-length segments of a few hundred
characters. Without any information flow across segments, the model can-
not capture any long-term dependencies beyond the fixed context length.



Ahmed Ebid

• Fixed-length segments are constructed by choosing a consecutive chunk of
symbols without paying attention to the sentence or semantic boundaries.
This problem is referred to as context fragmentation.

Transformer-XL introduces the notion of recurrence by reusing the hidden
states obtained from the previous segment instead of computing the hidden states
from scratch for each new segment. Through these recurrent connections, infor-
mation flows allowing long-term dependencies to be modeled. Transformer-XL
resolves the context fragmentation problem, because it is able to pass informa-
tion from the previous segments to the current segment.In addition, because of
the recurrent connection,it has better capabilities of modeling longer-term de-
pendencies.

9 Conclusion
The two main issues involved with modeling sequential data are vanishing and
exploding gradients and the sequence being too long. These were the issues each
model reviewed in this report tried to tackle. The Transformer model introduced
Attention and exploited parallelism. The Transformer-XL model solved the con-
text fragmentation issue of the vanilla Transformer model by using a recurrent
connection between segments. The IndRNN simplified the hidden state formula-
tion and the gradient computation, making it easy to regulate the gradients.
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