
Sum-Product Networks: An NN Alternative?

Erkin Türköz
Technical University Munich

erkin.turkoz@tum.de

Abstract

Sum-Product Networks (SPNs) are a kind of deep net-
work in the form of a rooted directed acyclic graph. As the
name suggests, SPNs contain sum and product nodes as in-
ternal nodes in addition to leaf nodes. At the leaves, SPNs
hold univariate distributions. When the sum and product
nodes satisfy some important conditions, each SPN node
represents a probability distribution. This fact attaches a
probabilistic meaning and generative modeling capability
to SPNs. SPNs are distinguished with their ability to per-
form tractable and exact inference even with missing input
values, which is not possible with Neural Networks (NNs).
In this report, the definition and fundamental properties
of SPNs, different SPN architectures, learning & inference
algorithms will be presented and a comparison of SPNs
against NNs will be made.

1. Introduction
Sum-Product Networks (SPNs) were first introduced by

Poon and Domingos [1] in 2011. An SPN is essentially a
rooted directed acyclic graph containing the sum, product
and leaf nodes. Leaf nodes hold probability distributions.
Under certain conditions, each internal node in an SPN also
represents a probability distribution, which brings a proba-
bilistic interpretation to SPNs. One of the most remarkable
properties of SPNs is probably its ability to perform several
probabilistic inference tasks in a tractable manner. More
precisely, SPN’s root node can exactly output the joint or
marginal probabilities for specific configurations of its vari-
ables with linear complexity. Because of the ability of SPNs
to handle missing features in the data via marginalization
and the efficiency in exact probabilistic inference, the appli-
cability of SPNs as an alternative solution to the problems
for which NNs are mainly used is investigated by some re-
searchers. [2, 3, 4]

There are some similarities of SPNs to the Probabilis-
tic Graphical Models (PGMs), e.g. Bayesian or Markov
Networks, and the Neural Networks (NNs). [3] However,
compared to SPNs, PGMs are more convenient to highlight

the conditional independence between variables [4], but it
is proven that the class of functions that SPNs represent ef-
ficiently is more general than the set of tractable functions
representable with PGMs. [1] On the other hand, there are
distributions that NNs can efficiently represent while SPNs
cannot. [5] Further differences between SPNs and NNs will
be discussed later.

In this report, SPNs will be briefly reviewed. First, their
definition and properties will be given in Section 2. Sec-
ondly, some variations of SPNs designed for different tasks
will be introduced in Section 3. Then, some of the common
inference tasks, parameter and structure learning techniques
will be explained in Sections 4 & 5. Lastly, a detailed com-
parison between NNs and SPNs will be made in Section 6.

2. Definition and Properties of SPNs
In the original paper [1], SPNs are defined as a rooted di-

rected acyclic graph containing the sum and product nodes.
According to [1] and [6], SPNs have the following funda-
mental properties:

• Internal nodes are either sum or product nodes. If
an SPN represents a continuous distribution, then sum
nodes become integral nodes.

• Sum and product nodes are placed in an alternating
fashion.

• Links emanating from sum nodes have non-negative
weights.

• Each leaf is typically a univariate distribution. In the
case of discrete variables, leaves are indicators, which
activate a leaf only if a specific condition is met for a
specific value, while in the continuous case, they rep-
resent univariate Gaussian or other univariate contin-
uous distributions in general. However, leaves can be
extended to contain multivariate distributions as well.

The definition of SPN is recursive. Therefore, any node
v of an SPN is also an SPN rooted at v. [1] Based on this
fact, note that there is no restriction regarding the type of

1

Figure 1. A Complete and Decomposable SPN Example: Network
has 3 variables A, B & C. Variables are discrete and binary-
valued. Therefore, there are 6 leaf nodes each of which holds indi-
cator function (I). Sum node weights can be thought as conditional
probabilities and a bottom-up or forward pass can be considered as
the application of the chain rule for probabilities. (Figure is taken
from [6].)

the root node. In other words, it can be a sum or product
node.

The value of a variable is a particular assignment to that
variable. The scope of a node refers to the set of variables
associated with at least one leaf node accessible from that
node. [1]

In SPNs, leaf nodes act as inputs and the root node is the
output thereof. Furthermore, each leaf node represents a
simple distribution (or probability density function). There-
fore, the overall SPN model can be interpreted as a hier-
archy of probability distributions under certain conditions.
In this probabilistic framework, sum nodes are factors of a
joint distribution (defined by the parent product node) and,
at the same time, they represent mixtures of different distri-
butions (defined by child product nodes). They can be also
viewed as latent variables of the SPN. Product nodes, on
the other hand, are the constituents of the mixtures (defined

by parent sum node) and, at the same time, they represent
the joint probability of their factors (defined by child sum
nodes). [1, 3] As SPNs directly model the joint distribu-
tions of the variables, they are generative models. [7]

As mentioned, for this probabilistic interpretation to
hold, an SPN has to fulfill some conditions: [1, 6]

• Completeness: A sum node is complete if and only if
all of its children have the same scope. An SPN is com-
plete if and only if all of its sum nodes are complete.

• Decomposability: A product node is decomposable if
and only if all of its children have pairwise disjoint
scopes. An SPN is decomposable if and only if all of
its product nodes are decomposable.

If an SPN satisfies completeness and decomposability, it
is said to be valid. A valid SPN represents the unnormal-
ized probability distribution over its variables. Complete-
ness and decomposability are sufficient but not necessary
for the validity of overall SPN. On the other hand, they are
necessary to enforce every sub-SPN to be valid. When an
SPN is valid and every sum node of it has weights nor-
malized to 1, then SPN represents the normalized proba-
bility distribution. [1] Then, the root node of the SPN can
exactly and efficiently evaluate joint, marginal, and condi-
tional probabilities with respect to its input values. [6] A
simple example for a complete and decomposable SPN can
be seen in Figure 1.

These two properties are significant because while com-
pleteness enforces sum nodes to produce valid mixture
models, decomposability dictates that children of product
nodes are independent of one another and factorized distri-
butions computed by the product nodes are valid. [8]

Sum nodes of an SPN can also have selectiveness prop-
erty. If a sum node v is selective, then for all possible com-
plete configurations to the variables in the scope of v, at
most one child has a positive output value. However, an im-
portant detail in this statement is that if configurations are
incomplete (i.e. partial, one or more variables are missing)
then there can be more than one child of v with a positive
output value and this does not break the condition for the
selectivity of the sum node v. An SPN is selective when all
of its sum nodes are selective. [6] Selective SPNs are use-
ful in practise because parameter learning with MLE can
be performed with a closed-form expression [9] and exact
MPE inference becomes tractable. [10]

If an SPN is not selective, it can be augmented to a se-
lective one. Resulting SPN is called augmented SPN and it
represents the same probability function as the original one.
However, during the augmentation, new variables and links
are introduced. Therefore, augmented SPN has a different
inner structure from the original SPN. The interpretation for
newly-inserted nodes is that such nodes were latent in the

2

original SPN and they are revealed when the SPN is aug-
mented. As mentioned previously, selective SPNs are very
desirable for some learning and inference tasks. Because
the augmentation operation generates a selective SPN from
a non-selective one, this transformation makes it possible
to use existing algorithms for selective SPNs on the aug-
mented version. However, the results obtained from aug-
mented SPN is only an approximation for the original SPN
and not guaranteed to be a good one. [6]

3. Different SPN Architectures

In this section, some examples of different architectures
derived from basic SPN definition to tackle different spe-
cialized tasks will be presented.

3.1. Deep Generalized Convolutional Sum-Product
Networks (DGC-SPN)

Deep Generalized Convolutional Sum-Product Net-
works (DGC-SPNs) [3] are introduced to equip SPNs with
the ability to capture spatial features in images. It is simi-
lar to Convolutional Neural Networks (CNNs) in this sense.
However, DGC-SPN maintains the probabilistic interpreta-
tion of SPNs. It can be trained for both generative and dis-
criminative image tasks. Contrary to Deep Convolutional
SPNs (DCSPNs), which is again an SPN-based architec-
ture for spatial data by [2], DGC-SPN can take overlap-
ping patches from the image with a new stride and dila-
tion parametrization without violating validity. With over-
lapping patches, the authors emphasize that DGC-SPN cap-
tures features with a finer scale and coverage than DCSPNs.
Therefore, the class of distributions representable by DGC-
SPN is broader than DCSPNs.

In their terms, all nodes along the channel dimension of
a specific spatial location in the patch form a cell. The sum
layer is the result after summing nodes over channels per
cell. Therefore, each sum operation computes a mixture of
nodes of a specific cell. The result of each sum yields a
new node in the respective output cell. As it is possible to
define multiple single-cell sums by varying the weights, the
number of channels per output cell can be arbitrarily cho-
sen. The product layer is the outcome of multiplying single
channels from different cells. Therefore, the product layer
combines inputs spatially. Sum and product layer computa-
tions are performed alternatingly. (See Figure 2.)

The resulting model is valid because completeness is
achieved by ensuring that each node in the same cell has the
same scopes and decomposability is maintained with expo-
nentially growing dilation (dilation rate is doubled at every
product layer, see Figure 2). This parametrization of prod-
ucts ensures that nodes with common scopes are skipped,
yielding disjoint scopes for multiplications and maintaining
decomposability.

3.2. Dynamic SPNs (DSPN)

Regular SPNs can represent distributions of only a fixed
number of inputs. Therefore, they are not directly appli-
cable to sequential data. For that reason, in [4], authors
introduce Dynamic SPNs (DSPN) to generalize SPNs to se-
quential data with varying number of inputs. They define 3
main types of networks and interface nodes to connect these
networks to achieve this goal:

• Interface Node: Contrary to the regular leaf or root
nodes, interface nodes connect pairs of networks. The
connection is established by sharing interface nodes
between network pairs, e.g. output interfaces of the
previous network are passed as input interfaces to the
next network. Interface nodes can be sum or product
nodes and they can be root or leaf.

• Template Network: For n binary variables, template
network consists of 2n standard leaf nodes, k inter-
face nodes as input from the previous network, and k
root nodes as an output interface to the next network.
Hence, there are 2n+ k leaves in total and k roots.

• Bottom Network: The bottom network processes the
start of the sequence. Therefore, it has no interface
nodes as input. For n binary variables, it has 2n leaves
and k root nodes as an output interface to the next net-
work.

• Top Network: The top network combines outputs of
the previous network that processes the end of the se-
quence. Therefore, it has k leaves and 1 root.

Modeling sequential data of length T requires 1 bottom net-
work followed by a template network replicated T−1 times
and 1 top network at the end. Figure 3 depicts an example
for a DSPN.

The authors define the invariance property to check
whether the template network satisfies completeness and
decomposability properties. Furthermore, they provide
a theorem incorporating conditions regarding invariance
property for template networks as well as conditions for
completeness and decomposability of bottom and top net-
works to ensure that overall DSPN is valid.

3.3. Sum-Product-Quotient Networks (SPQN)

In [7], authors present Sum-Product-Quotient Networks
(SPQN), which extends the basic SPN architecture by intro-
ducing a quotient node which accepts two SPNs as numer-
ator (e.g. P (A,B)) and denominator (e.g. P (B)) and di-
rectly computes conditional distributions with Bayes’ Rule
(P (A|B) = P (A,B)

P (B))). Therefore, in SPQNs, every internal
node represents a conditional distribution. (See Figure 4 for
an illustration.)

3

Figure 2. Visualization of DGC-SPN for 1D: Sum nodes operate on channels of a cell while product nodes act on pairs of cells. While
taking the product, the stride is 1, the dilation rate starts with value 1 at layer 1, and at each layer, it is doubled. Padding nodes have a
constant probability of 1. Red lines are used to emphasize that the product node is linked to the upper channel of the cell from the previous
layer. Blue lines show that the product is linked to the lower channel of the cell from the previous layer. (Taken from [3].)

The authors define modified versions of SPN’s complete-
ness and decomposability properties, namely conditional
completeness and conditional decomposability, and intro-
duce one additional condition called conditional soundness.
Under these conditions, they prove that their model retains
the validity and tractable inference property of SPNs. Fur-
thermore, they show that the modified conditions are re-
laxed versions of the original ones. As a result, they in-
dicate that the class of distributions that SPNs can repre-
sent efficiently is the subset of the class of distributions effi-
ciently representable by SPQNs. However, they note that
because of conditional decomposability, SPQNs create a
partial ordering of the input variables. Therefore, tractable
marginalization is restricted to the subsets of the input vari-

ables which comply with this order.

4. Inference
In this section, based on [6], the different ways to per-

form inference with SPNs are discussed.

4.1. Inference with Joint, Marginal & Conditional

As mentioned, an SPN defines a distribution over its in-
puts and one can perform inference with joint, marginal &
conditional densities exactly and efficiently with bottom-up
passes from leaves to the root. (See Figure 5) More pre-
cisely, the complexity of such inference tasks in SPNs is
linear in the number of edges in the SPN graph. [6]

Joint probabilities can be directly computed in a single

4

Figure 3. DSPN with 2 Binary Variables Unrolled for a Sequence
of Length 3: Interface nodes, which are product nodes in this case,
connect each two consecutive networks. For this example, there
are 4 networks in total, one bottom network, followed by two tem-
plate networks, followed by one top network. (Adapted from [4].)

Figure 4. An Illustration for SPQN: The root quotient node takes
the values of two sub-SPNs which represent two different condi-
tional distributions and computes yet another conditional distribu-
tion using Bayes’ Rule. [7]

bottom-up pass. As leaves correspond to all possible con-
figurations of variables of the model, it suffices to set the
variables to the values of the configuration of the joint dis-
tribution to be computed and perform a pass in the upward
direction. [6]

For computing the marginals directly, a single bottom-
up pass is again sufficient. However, in this case, one has to

take in all possible configurations of the missing variables
to marginalize them out. In the discrete case with indicator
leaves, this simply means setting all leaves belonging to a
variable to be marginalized to 1. Then, a forward pass yields
the desired marginal probability at the root. [1]

Conditional probability can be computed indirectly with
Bayes’ Rule by taking the division of the results from sepa-
rate bottom-up passes. [4, 11]

4.2. Most Probable Explanation (MPE) Inference

Following the notation in [6], V denotes all variables,
X variables of interest, x values for variables of interest, E
evidence variables, e values for evidence variables respec-
tively. In MPE, all variables are either evidence variables
or variables of interest, equivalently V = X ∪ E, mean-
ing there are no hidden variables H. The goal of MPE is to
maximize the posterior for X:

MPE(e) = argmax
x

P (x | e) (1)

In [1], a linear-time procedure similar to the Viterbi algo-
rithm is outlined to compute MPE. However, the exact MPE
inference for regular complete and decomposable SPNs in
general is reported to be NP-hard. [10] Therefore, the result
of the outlined procedure is not necessarily the actual MPE
solution. On the other hand, when the SPN is selective, it
computes the MPE exactly. [9]

According to [6], when an SPN is selective, the MPE
inference is computed as follows:

• Sum nodes are replaced with max node to compute:

Smax
i (e) = max

j∈ch(i)
wij · Smax

j (e) (2)

where Si, Sj are the values of the sum node i and its
child j respectively, wij is the weight of link between
sum node i and its child i, e denotes values of evidence
variables and ch(i) is the children nodes of sum node
i.

• Product nodes compute values in the same way as reg-
ular SPNs.

• A forward pass in bottom-up direction is performed
to compute values for product and max nodes as de-
scribed. For evidence variables, only the leaf nodes
corresponding to assigned values are used. On the
other hand, for variables of interest, all possible leaves
are taken into account.

• After the forward pass, a backward pass in the top-
down direction is performed. Along the way, for each
sum node i, the child yielding Si is pursued and for
each product node, all children are followed.

5

Figure 5. Computation of Joint and Marginal Probabilities: Left figure shows the SPN configured to compute joint probability for a
particular assignment (a,¬b,¬c) of variables A, B & C. Right figure shows the SPN configured to compute a marginal probability for
the variable C taking the value ¬c. Using the result of these two separate forward passes, one can compute the conditional probability

P (a,¬b | ¬c) indirectly: P (a,¬b | ¬c) = P (a,¬b,¬c)
P (¬c) = 0.068. (Adapted from [6].)

• At each leaf node, where the backward pass ended, the
value v which satisfies v = argmax

v∗
P (v∗) is returned.

When leaves hold continuous distributions, the return
value is equivalent to the mode of the distribution at the
arrived leaf. In the discrete case with indicators, the
return value is simply the discrete label of the arrived
node.

In Figure 6, MPE inference computation is illustrated for
a complete and decomposable SPN.

4.3. Maximum A Posterior (MAP) Inference

Similar to MPE, the objective of MAP is:

MAP(X, e) = argmax
x

P (x | e) (3)

However, MAP is more general in MPE because it ad-
ditionally considers the existence of hidden variables H.
Therefore, now V = X ∪ E ∪H. Due to the presence of
hidden variables, MAP is naturally a harder problem than
MPE. As a result, the MAP is also NP-hard. However,
some algorithms to efficiently approximate MAP for SPNs
are available. [6]

5. Learning
5.1. Parameter Learning

Learnable parameters of the SPNs are weights of sum
nodes and parameters of the leaf distributions. The most
prevalent parameter learning techniques for SPNs are based
on Maximum Likelihood Estimation (MLE). Following the
notation in [6], D = {v1,v2, . . . ,vT } denotes dataset con-

6

Figure 6. MPE Inference for Variables of Interest A & C with Evidence Variable B = b: Left figure shows forward pass made on the
Max-Product Network obtained by replacing sum nodes of the original SPN with max nodes. During the forward pass, max nodes keep
track of which link was previously followed. As shown in right figure, during the backward pass, stored links are followed to find the MPE
values for variables A & C, which is (¬a,¬c) in this example. (Adapted from [6].)

taining T independent and identically distributed samples,
W is the sum node weights and Θ is the parameters for
distributions at the leaves. Then log-likelihood is defined
as:

LD(w,θ) = logP (D | w,θ)

=

T∑
t=1

logS(vt | w,θ)
(4)

And, Maximum (Log) Likelihood Estimate for parame-
ters is then found by the following objective:

ŵ, θ̂ = argmax
w,θ

LD(w,θ)

subject to wij ≥ 0 and
∑

j∈ch(i)

wij = 1
(5)

In the generative settings, parameters learned with the
MLE model the full joint distribution of the samples while

in discriminative settings, learned parameters model condi-
tional distributions of samples given certain classes. [6]

Since there is no dependence between parameters of dif-
ferent nodes, each can be optimized individually. For leaf
node distribution parameters, existing statistical methods
can be applied. [6] Therefore, following subsections con-
centrate on learning the sum node weights only.

5.1.1 MLE in Closed Form

As indicated in [6, 9], for a selective SPN, MLE for weights
wij of sum node i is given in closed form:

ŵij =



nij∑
j′∈ch(i)

nij′

, if
∑

j∈ch(i) wij = 1

1

|ch(i)|
∀i ∈ ch(i), otherwise

(6)

7

The nij corresponds to the number of times the link i→
j is observed from sum node i to its child j according to the
samples in the dataset. More precisely, for each sample, two
passes are made in the following order: a forward pass and
a backward pass. Forward pass computes the output for all
nodes. Backward pass determines the used links between
sum nodes and their children. For the links observed, the
respective counts are incremented. In the backward pass, all
links are followed for product nodes while for sum nodes,
only the child with positive value is followed and the counts
corresponding to the followed links are incremented. [6]

5.1.2 Expectation Maximization (EM)

This section summarizes the description of Expectation
Maximization in [6].

Samples in actual datasets often do not contain values for
all variables. Variables without a value should be treated as
hidden variables. The Expectation Maximization algorithm
is well-suited for incomplete data. EM algorithm alternates
between two steps named E-step and M-step.

In the E-step, parameters of the model are fixed and the
probability for each possible configuration of hidden vari-
ables is computed given the state of the model and vari-
ables whose values are already known. After this step, the
original dataset is augmented to include all possible hidden
state configurations and their respective probabilities given
model parameters and variables with already known values.

In the M-step, the augmented dataset obtained after E-
step is used to compute the MLE for model parameters.
If SPN is selective, then the closed-form MLE solution in
Section 5.1.1 is again applicable at M-step because the aug-
mented dataset is already complete.

The EM algorithm alternates between these steps until
convergence. Initialization of the algorithm is crucial to find
a good solution.

Lastly, because the EM algorithm depends on partial
derivatives flowing from the root to the leaves, the perfor-
mance degrades as the network gets deeper. The reason is
the deeper the network becomes, the smaller the gradients
and their products get. This problem is known as the vanish-
ing gradient problem, which is also very common in deep
NNs. In SPNs, this problem can be circumvented with Hard
EM, which assigns the most probable value to each hid-
den variable at the E-step, instead of augmenting the dataset
with all possible configurations of hidden variables. [1, 6]

5.1.3 Gradient Ascent

Similar to NNs, maximization of likelihood can also be
achieved with Gradient Ascent (GA), which is an iterative
optimization technique based on gradients and backpropa-
gation algorithm. SPNs can be trained with GA both gener-
atively [1] and discriminatively [12]. Stochastic and mini-

batch versions of GA are also applicable. Similar to EM,
GA is also prone to vanishing gradient issue. Therefore,
Hard GA is introduced. SPN training follows the same stan-
dard recipe as NNs. More detailed explanation is available
in [6].

5.2. Structure Learning

In the first paper for SPN [1], authors outline a proce-
dure which starts from a generic and dense SPN structure
which is later refined by removing links with zero weights
as the dataset is processed. Although this procedure par-
tially learns a structure from data, the first algorithm that
builds SPN completely from data is the BuildSPN algo-
rithm presented by [13]. Later, it is followed by the Learn-
SPN algorithm of [14]. Although LearnSPN is not the cur-
rent state-of-the-art, it remains to be an important structure
learning algorithm for SPNs. [6] In this section, these two
algorithms will be explained.

5.2.1 BuildSPN

According to [13], the main idea of BuildSPN is cluster-
ing dependent variables under a set of sum nodes which
can be interpreted as latent variables. Each of these la-
tent variables models the dependency between its children.
Authors of [13] indicate that the initial architecture which
uses rectangular regions on image data to utilize spatial re-
lationships in [1] creates artifacts like region boundaries.
The structure learned with BuildSPN overcomes such prob-
lems because such a structure can learn to put sum nodes
on top of spatially local or non-local regions with arbitrary
shapes. Therefore, regions processed by learned SPNs are
not biased towards any particular shape, and learned SPNs
can also model data that does not have spatially local fea-
tures. As a result, architectures generated by BuildSPN can
be seen as a generalization over those obtained in [1].

Briefly, the BuildSPN algorithm starts with partitioning
the scope of SPN’s root node S. A new partition node P is
created under S. The generated partition node is then given
two region nodes as children. By partitioning and introduc-
ing extra nodes, S effectively distributes its responsibilities
to the created region nodes through partition nodes. Then,
scope partitioning continues recursively with each subgraph
defined by the added region nodes. In reality, the graph cre-
ated in this fashion is not exactly an SPN. A further conver-
sion from the region graph to an SPN is required but fun-
damentally, partition nodes can be viewed as product nodes
while region nodes can be seen as sum nodes.

5.2.2 LearnSPN

As noted in [14], BuildSPN has some limitations. First of
all, variables taking similar values in the dataset are clus-
tered. Therefore, some variables exhibiting strong depen-

8

dence but taking different values might be separated during
the clustering process (For instance, when two variables are
negations of one another.). The separation of strongly de-
pendent variables leads to a huge loss in likelihood. Sec-
ondly, parameter learning can only be done after the struc-
ture is learned, resulting in extra overhead for learning pa-
rameters and a possibly sub-optimal structure and parame-
ter estimation. Lastly, the number of nodes in the SPN and
the cost of learning are exponential in the number of vari-
ables in the worst-case. The authors propose the LearnSPN
algorithm to overcome these limitations.

Briefly, the steps in the algorithm are as follows: [6, 14]

• Algorithm takes a matrix as input where each row rep-
resents an instance from the dataset and each column
corresponds to a variable.

• If the input matrix has a single column, the algo-
rithm returns a leaf containing a univariate distribution
whose parameters are estimated with MLE.

• If it has more than one column, LearnSPN performs an
independence test on variables:

– If variables can be partitioned into mutually in-
dependent subsets, the algorithm proceeds with
the subsets after creating a product node on top
of them.

– Else, when they are not mutually dependent, the
algorithm partitions the instances into clusters
and proceeds with each cluster. In this case, a
sum node is generated on top of them and the
weights of sum node links are computed with the
ratio of instances in the cluster to the total num-
ber of instances before clustering.

When no dependencies between the variables are found,
the algorithm returns a completely factorized distribution.
When no independent subsets of variables are found, the
algorithm returns the kernel density estimate of the distri-
bution.

Note that LearnSPN is a framework algorithm. Choices
of methods for variable splitting and instance clustering
might be different. In [14], authors chose to use the EM
algorithm for clustering instances and G-test as the inde-
pendence test for splitting the variables.

6. Comparison to Neural Networks

This section explains the similarities, differences be-
tween SPNs and NNs as well as the pros and cons of each
model.

The authors of [1] compare SPNs with CNNs due to sim-
ilarity in terms of alternating sum-product operations. They

state that the average pooling operation of CNNs resem-
bles marginal inference of SPNs while max-pooling opera-
tion in CNNs is similar to MPE inference in SPNs. How-
ever, while SPNs have a probabilistic interpretation and a
general-purpose usage, CNNs do not have a probabilistic
meaning and they are mainly used in tasks requiring utiliza-
tion of spatial structure in the data.

In [6], SPNs are compared with NNs in general. Accord-
ing to the authors, SPNs show a similarity to NNs in terms
of information flow. Therefore, SPNs can be thought of as
a form of a feed-forward deep network without special non-
linearity functions. The prevailing training algorithm for
NNs is gradient descent. SPNs, on the other hand, can be
additionally trained with expectation maximization or other
probabilistic methods with better generalization and effi-
ciency. Moreover, there are also several structure learning
algorithms available for SPNs. Although there are structure
learning algorithms for NNs too, they demand huge com-
putational resources. Therefore, the structure of NNs is of-
ten handcrafted. As manually-designed structures are not
learned from data, they tend to be huge and computation-
ally expensive. While inference tasks can be done by SPNs
exactly and efficiently with a few forward passes, NNs re-
quire only one pass but the inference is not exact. SPNs can
compute probabilities via marginalization even when some
input values are missing. However, NNs require a complete
assignment to input values to perform inference.

A variant of SPN is introduced in [11] in order to observe
the performance of SPNs when they are trained in a similar
way to NNs. This variant selects an SPN structure at ran-
dom, learns its parameters in the NN style and regularizes
it with the probabilistic dropout technique introduced in the
same work. This SPN variant is called Random Tensorized
SPN (RAT-SPN). Authors use a hybrid learning objective
combining cross-entropy and log-likelihood based on a con-
trol parameter, which switches the training schema of RAT-
SPN between discriminative (with cross-entropy) and gen-
erative (with log-likelihood) learning. Training RAT-SPNs
in a generative fashion makes them more robust against
missing features and uncertainties because of the nature
of generative models. As generative models represent full
joint distribution, one can compute the likelihood of a sam-
ple with respect to the modeled distribution and can assess
whether a sample is an inlier or outlier. Similarly, RAT-
SPNs can handle missing inputs by marginalization when
they learn the full joint distribution. For SPNs, these kinds
of probabilistic computations are tractable. On the other
hand, standard MLPs do not already represent a joint distri-
bution and even current generative NN models such as Gen-
erative Adversarial Networks (GAN) and Variational Au-
toencoders (VAE) can not evaluate the likelihood for data
exactly. Yet, authors count the constrained structural prop-
erties of SPNs, the prevalence of PGM-style learning algo-

9

rithms for SPN training, the inferior representation power
of SPNs compared to NNs as the reasons for why NNs are
primarily used instead of SPNs for solving various tasks.

As mentioned in Section 3.2, DSPNs are presented by [4]
to process sequential data with SPNs. The authors report
that DSPNs are inferior to RNNs in terms of expressive-
ness because DSPNs are limited to sum and product nodes
while RNNs benefit non-linearities to increase expressive
power. However, they note that DSPNs are easier to train
than RNNs due to highly non-convex objective function and
vanishing or exploding gradient issues of RNNs.

The superiority of NNs to SPNs in terms of expressive-
ness is also mentioned in [3, 8]. As noted in [3], SPNs can
perform discriminative and generative tasks with a single
network definition while CNNs are dedicated to discrimi-
native problems and GANs are assigned to generative tasks.
However, GANs only allow efficient sampling despite being
generative models, and contrary to SPNs, exact tractable in-
ference is not possible with GANs, but the inference is ap-
proximated through samples generated by the network.

7. Conclusion
In this report, Sum-Product Networks (SPNs), their def-

inition and fundamental properties, different architectures,
some of the inference, parameter, and structure learning al-
gorithms were discussed, and they are compared with NNs.

SPNs are a type of deep network formed as a directed
acyclic graph which contains sum and product nodes in
an alternating fashion as well as leaf nodes representing
distributions. When completeness and decomposability
properties hold, SPNs can compute mixture and product
of base distributions represented by the leaves. As a re-
sult, complete and decomposable SPNs and their sub-SPNs
all represent different distributions. Therefore, complete-
ness and decomposability properties attribute a probabilis-
tic interpretation to SPNs. Moreover, this particular subset
of SPNs can perform probabilistic inference tasks such as
joint, marginal, and conditional probability computations in
an exact and tractable way. This property is one of the most
promising features of SPNs because probabilistic inference
cannot be done efficiently or exactly with PGMs and NNs.

SPNs are related to both PGMs and NNs. The repre-
sentation power of SPNs lies between these two classes
where the largest and smallest set of representable tractable
functions belong to NNs and PGMs respectively. Although
NNs currently deliver state-of-the-art performance in dif-
ferent tasks from various domains such as spatial and tem-
poral data, researchers introduced specialized SPN architec-
tures, which maintains the probabilistic nature of SPNs, and
tried to address many of such problems. The performance
of SPNs at the moment follows NNs from behind. How-
ever, SPNs have some remarkable features that are currently
unavailable for NNs, such as providing efficient and exact

inference, having an inherent probabilistic construction, ac-
cepting missing features, and being able to learn the struc-
ture from the data. Because of these advantages of SPNs
over NNs, SPNs are considered as a possible alternative to
NNs by researchers.

References
[1] H. Poon and P. Domingos. Sum-product networks: A new

deep architecture. In 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops), pages 689–
690, 2011.

[2] Cory J Butz, Jhonatan S Oliveira, André E dos Santos, and
André L Teixeira. Deep convolutional sum-product net-
works. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3248–3255, 2019.

[3] Jos van de Wolfshaar and Andrzej Pronobis. Deep general-
ized convolutional sum-product networks, 2020.

[4] Mazen Melibari, Pascal Poupart, Prashant Doshi, and
George Trimponias. Dynamic sum product networks for
tractable inference on sequence data. In Conference on Prob-
abilistic Graphical Models, pages 345–355, 2016.

[5] James Martens and Venkatesh Medabalimi. On the expres-
sive efficiency of sum product networks. arXiv preprint
arXiv:1411.7717, 2014.

[6] Iago Parı́s, Raquel Sánchez-Cauce, and Francisco Javier
Dı́ez. Sum-product networks: A survey. arXiv preprint
arXiv:2004.01167, 2020.

[7] Or Sharir and Amnon Shashua. Sum-product-quotient net-
works. In International Conference on Artificial Intelligence
and Statistics, pages 529–537. PMLR, 2018.

[8] Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl
Stelzner, Robert Peharz, Thomas Liebig, and Kristian Ker-
sting. Conditional sum-product networks: Imposing struc-
ture on deep probabilistic architectures. arXiv preprint
arXiv:1905.08550, 2019.

[9] Robert Peharz, Robert Gens, and Pedro Domingos. Learning
selective sum-product networks. In LTPM workshop, 2014.

[10] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro
Domingos. On the latent variable interpretation in sum-
product networks. IEEE transactions on pattern analysis and
machine intelligence, 39(10):2030–2044, 2016.

[11] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejan-
dro Molina, Martin Trapp, Kristian Kersting, and Zoubin
Ghahramani. Probabilistic deep learning using random sum-
product networks. arXiv preprint arXiv:1806.01910, 2018.

[12] Robert Gens and Pedro Domingos. Discriminative learning
of sum-product networks. In Advances in Neural Informa-
tion Processing Systems, pages 3239–3247, 2012.

[13] Aaron Dennis and Dan Ventura. Learning the architecture
of sum-product networks using clustering on variables. In
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’12, page
2033–2041, Red Hook, NY, USA, 2012. Curran Associates
Inc.

10

[14] Robert Gens and Domingos Pedro. Learning the structure of
sum-product networks. In International conference on ma-
chine learning, pages 873–880, 2013.

11

