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I. INTRODUCTION

UNCERTAINTY is a central concept within statistical modeling, referring to circumstances involving incomplete infor-
mation as a result of partial observability, non-determinism, or both.[1] In the context of supervised machine learning, a

model’s ability to quantify the uncertainty of a prediction runs concurrent to its ability to make correct predictions. However,
standard deep neural networks do not capture model uncertainty, but rather attempt to provide a point estimation for the
true distribution underlying the prediction.[2] In classification tasks the output class probabilities are sometimes erroneously
interpreted as model confidence, though true uncertainty quantification in this case would involve a probability distribution
over those predictive probabilities. While simple neural networks are able to produce predictive class probabilities that reflect
the true correctness likelihood, modern architectures such as the ResNet[3] exhibit a significant mismatch between the two.[4]

This phenomenon defines the concept of uncalibrated confidence, which has received significant attention in research[5,6,7] since
deep neural networks have started to take on important responsibilities such as driving.[8]

Fig. 1: The same point estimation corresponds to the peak of infinitely many distributions. Using
point estimations therefore collapses most of the nuance of the underlying distribution, including the
confidence of the estimation, characterized by the general spread and shape of the distribution.

This report will serve as an overview of variational inference as it relates to uncertainty quantification and Bayesian neural
networks. Chapter II provides the theoretical foundations that build up to variational inference. Chapter III takes a more
practical view on the theoretical foundations laid out previously, and provides implementation tricks necessary for a minimal
working example of variational inference at scale. Chapter IV then shows how these building blocks come together with two
different model types that employ stochastic variational inference, and their benefits. Lastly, chapters V-VI look to the future
by showcasing more recent innovations along with their respective advantages and disadvantages, as well as reflecting on the
trajectory of variational inference and the niche it fills in the field of artificial intelligence.

II. THEORETICAL BACKGROUND

A. Latent Variable Models

The goal of supervised learning is to learn a function that maps one or more input features to one or more target variables,
given an observed set of input-output pairs.[1] In probabilistic terms, this ideally corresponds to obtaining a joint probability
distribution of the target variables over the feature space, which models the uncertainty inherent to the general incompleteness
of data, in terms of both the finite number of observations, and the lack of perfect causality between features and targets. The
problem with explicitly learning this joint distribution is that its dimensionality grows linearly with the number of features and
targets, as a result of the arbitrary variable inter-dependencies it models.

p(x1:N ) = p(x1) p(x2|x1) p(x3|x2, x1) p(x4|x3, x2, x1) . . . p(xN |x1:N−1)
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In order to reduce the complexity of the joint distribution to the realm of tractability, simplifying assumptions have to
be made, such as the Naive Bayes assumption of conditional independence of the features given the target variable. These
assumptions are often not realistic, and reduce the expressivity of the resulting model.[9]

Fig. 2: The joint probability distribution (green) models the correlation between the two variables, while
their marginal distributions (red and blue) are perfectly Gaussian. This simplistic example is tractable
to compute given just the raw data (black dots), but the complexity of this task quickly explodes with
higher dimensionalities and irregular distributions.

Latent variable models attempt to break the complexity of the task down into manageable chunks, by making the assumption
of an underlying latent structure from which the observations stem. The model then evaluates the conditional distribution of the
observations given the latent variables, while the training procedure attempts to learn the distribution over the latent variables
given the observations.

B. Bayesian Inference
Bayesian inference is a statistical inference method used in machine learning to obtain the full posterior probability

distribution over some latent parameters, given a set of observations. This comes at the cost of computational complexity,
which often renders the search for an exact solution infeasible, relegating high-dimensional models to approximative methods
such as the maximum likelihood (MLE) or maximum a priori (MAP) estimations.[9]

p(θ|X, α) =

likelihood︷ ︸︸ ︷
p(X|θ, α) ·

prior︷ ︸︸ ︷
p(θ|α)

p(X|α)︸ ︷︷ ︸
evidence

∝ p(X|θ, α) · p(θ|α)

p(X |α) =

∫
p(X | θ) p(θ |α) dθ

θMLE = arg max
θ

p(X | θ, α)

θMAP = arg max
θ

p(X | θ, α) p(θ |α)

Eq. 3: Given prior α and observations X = [~x1, . . . , ~xn]>, with ~xi ∼ p(~x|θ), Bayes’ rule gives the
posterior probability distribution for latent variable(s) θ. The evidence p(X|α) demands integration over
the entire latent space, rendering the exact computation of the posterior intractable and justifying the
widespread avoidance of Bayesian inference in favor of the θMLE and θMAP estimations.



BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES 3

C. Bayesian Neural Networks
Stochastic Neural Networks are artificial neural networks with incorporated stochastic components.[10] This definition al-

lows for the variation in techniques found in literature, such as stochastic activation functions,[11] weights,[12] and inference
values.[12,13] Bayesian Neural Networks are then defined as stochastic neural networks trained with Bayesian inference.[10]

Fig. 4: Traditional feed-forward networks approximate a point estimate during training, collapsing all
of the nuance in the underlying distribution to a single point, thus underestimating the true variance of
the weights.[10] Leveraging this additional information, Bayesian neural networks are shown to better
calibrate their output to the real probabilities corresponding to the target variable.[14,15,16] Note that this
does not hold for stochastic neural networks in general, as a network with random weight distributions
would be classified as a stochastic neural network. Bayesian neural networks are by definition trained
using Bayesian inference, resulting in meaningful weight distributions.

p(x̃ |X, α) =

∫
p(x̃ | θ) p(θ |X, α) dθ

Eq. 5: Given a new data point x̃, marginalizing over the latent space gives the posterior predictive
distribution of x̃, consisting of its probability p(x̃ | θ) under the latent variables, and the posterior
p(θ |X, α). In the context of Bayesian Neural Networks, the latent variables can be defined as the
weights of the network, meaning that p(x̃ | θ) is simply a forward pass of x̃ through the network. As
illustrated in Eq. 3, even a point-wise evaluation of the posterior is intractable due to its dependency on
the evidence term p(X|α), therefore this formulation is still not suitable for training BNNs in practice.

D. Variational Inference
Variational methods were adopted in the late 1980s to serve as an alternative to Monte-Carlo sampling techniques as a solution

for the intractable posterior problem.[17,18,19] Variational inference, the resulting technique, formulates the approximation of the
posterior distribution as an optimization problem aiming to find the closest distribution to the real posterior, from a restricted
family of comparatively simple distributions.[19]

Fig. 6: Minimizing the Kullback-Leibler divergence to the true posterior p∗ gives its closest distribution
q from a tractable family of parametric distributions, which can then be used as an approximation for p∗.
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KL(p∗||q) =

∫
p∗(θ) log

p∗(θ)

q(θ|λ)
dθ

6= KL(q||p∗) =

∫
q(θ|λ) log

q(θ|λ)

p∗(θ)
dθ

= Eq
[
log

q(θ|λ)

p∗(θ)

]
Eq. 7: The Kullback-Leibler divergence[20] is used as a measure of distance between the true
intractable distribution p∗(θ) and an approximate distribution q(θ|λ) chosen from a parametric family of
distributions. Intuitively, the Kullback-Leibler divergence represents the expectation of the log difference
between the two probabilities, with respect to the first probability distribution. This makes it favorable
to use KL(q||p∗), since the expectation with respect to q is tractable, while the opposite is not.[9] Even
so, the formulation remains problematic due to the dependency of p∗(θ) = p(θ|X, α) on the evidence
term p(X|α). [Eq. 3] A discussion on the asymmetry of the KL operator can be found in Appendix A.

J(q) = KL(q||p̃)

=

∫
q(θ|λ) log

q(θ|λ)

p̃(θ)
dθ

=

∫
q(θ|λ) log

q(θ|λ)

p∗(θ) · Z
dθ

= KL(q||p∗)− logZ

Fig. 8: The variational objective J(q) is instead defined with respect to the unnormalized distribution
p̃(θ) = p(X|θ, α) · p(θ|α) = p∗(θ) ·Z. Unlike p∗(θ), p̃(θ) is tractable, and this formulation enables the
minimization of the distance between q and p∗, without requiring the explicit evaluation of p∗(θ).

J(q) = KL(q||p∗)− logZ ≥ − logZ

⇒ J(q) ≥ − log p(X|α)

⇒ arg min
λ∈F(q)

KL(q||p̃) = arg min
λ∈F(q)

KL(q||p∗)

Eq. 9: Since the Kullback-Leibler divergence is always non-negative, the variational objective J(q)
provides an upper bound on − log p(X|α), the negative log likelihood of the observed data. Minimizing
J(q) necessarily minimizes KL(q||p∗), as the evidence remains constant with respect to the choice of q.

arg max
λ∈F(q)

ELBO(λ) = arg max
λ∈F(q)

−J(q)

= arg max
λ∈F(q)

∫
q(θ|λ) log

p̃(θ)

q(θ|λ)
dθ

Eq. 10: The Evidence Lower Bound (ELBO) reformulation of the variational objective is most
commonly used in applications of variational inference. The optimization task becomes one of gradient
ascent, since the integral objective does not admit a closed-form solution.
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III. IMPLEMENTATION AND SCALING

Although the ELBO formulation in Equation 10 avoids even point-wise evaluations of the true posterior p∗, optimizing
over it remains a challenge. Without any guarantees of convexity, a closed-form solution for its global maximum is hopeless,
relegating any optimization effort to iterative gradient-based methods. Gradient ascent is not itself a walk in the park, as the
gradient with respect to the variational parameters λ does not magically cancel out with the integral over the latent variables θ.
In order to find a closed-form expression of the ELBO gradient, a restricted variational family of distributions must be chosen
for which the gradient can be analytically computed, such as the Conjugate-Exponential family.[21] One disadvantage of this
approach is that tighter restrictions upon the variational family result in lessened expressive power for estimating the true
posterior. Furthermore, the lack of generality in the analytical computations required for each new model greatly hinders wide
adoption of the variational inference approach, especially for models for which a closed-form solution does not exist. To
increase generality and lighten the computational load, various stochastic approximation approaches have been proposed in the
past decade, providing a closed-form approximation of the ELBO gradient in its general form.[22,23,24]

A. Mean Field Approximation
The mean field assumption restricts the variational distribution over the latent variables to be fully factorizable into inde-

pendent distributions over each variable.[25]

q(θ|λ) =

N∏
i=1

qi(θi|λi)

This simplifies the computation of a closed-form solution for gradient ascent on the ELBO at the cost of reduced expressivity
of the variational distribution. This assumption can also be combined with stochastic approximation methods to reduce the
computational load of the gradient ascent procedure by reducing the number of variational parameters |λ|, thus reducing the
dimensionality of the search space.

Fig. 11: Multivariate Gaussian distributions depicting factorizability. The distribution on the left has
each dimension independent of the other, while the distribution on the right illustrates an obvious
positive correlation. The multivariate Gaussian can be factorized if its covariance matrix is diagonal.[26]

Restricting the multivariate Gaussian family N (~µ,Σ) to a diagonal covariance matrix N (~µ, diag(~σ))
reduces the number of variational parameters |λ| from O(|θ|2) to O(|θ|). Further restricting the family
to N (~0, σI) reduces |λ| to O(1), as exemplified in the Variational Auto-Encoder.[24]

B. Score function stochastic gradient estimation
The score function of the variational distribution is defined as ∇λ log q(θs|λ). This method reformulates the gradient of the

ELBO such that the only gradient that needs to be computed is that of the score function.[23]

∇λELBO(λ) = ∇λ
∫
q(θ|λ) log

p̃(θ)

q(θ|λ)
dθ

= Eq [∇λ [log q(θ|λ)] (log p̃(θ)− log q(θ|λ))]

≈ 1

S

S∑
s=1

∇λ log q(θs|λ)(log p̃(θs)− log q(θs|λ), with θs ∼ q(θ|λ)

Eq. 12: The above reformulates the ELBO gradient in terms of the score function gradient, the model
forward pass p̃, and the variational distribution q. The proof for this reformulation can be found in
Appendix B-C. The expectation over the variational distribution can then be estimated with Monte
Carlo sampling, giving a noisy approximation of the ELBO gradient and enabling coordinate ascent.
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The score function estimator for the ELBO gradient has the clear advantage of side-stepping the gradient of the model
function p̃ entirely, enabling variational inference for arbitrary models without even the common constraint of differentiability.
This comes at the cost of variance, which has been shown to be very high in the score function estimator both experimentally
and theoretically.[27] Intuitively, the high variance can be explained as a result of missing out on the local information of
the model function that its gradient would provide. Thus, the score function estimator turns out to be a double-edged sword.
Nevertheless, proponents of the score function estimator have showcased various variance reduction techniques that improve
its viability.

Rao-Blackwellisation is a form of variance reduction that involves probabilistically conditioning the estimator on a subset of
dimensions and integrating out the remaining dimensions analytically. Concretely, this means that the dimensions {1, . . . , D}
of θ are partitioned into two disjoint sets S and S̄, and expectation can be estimated as by performing Monte-Carlo integration
over the smaller parameter space θS , conditioned on θS̄ which is kept constant. This conditional estimator has provably smaller
variance, and is advantageous as long as the conditional expectations can be computed efficiently.[27,28]

Control variates comprise a generic technique for reducing the variance of any Monte-Carlo method. Given the task of
computing Eq(θ|λ) [f(θ)], a control variate is defined as a function h(θ) with known expectation, which can be used to
construct a substitute f̃(θ) for f(θ) with identical expectation and smaller variance as follows.[23,27]

f̃(θ) = f(θ)− β(h(θ)− Eq(θ|λ) [h(θ)])

C. Reparametrization Trick
An alternative to the score function estimator is the reparametrization trick,[24] which additionally leverages gradient informa-

tion from the model itself, at the cost of requiring differentiable latent variables. The fundamental problem that the score function
estimator avoids is that sampling is not a differentiable operation, therefore the gradient is not able to propagate backward
past these sampling operations. The reparametrization trick reformulates the sampling procedure of θ into a deterministic
transformation of a sample that is drawn independently of λ from a base distribution.

θs ∼ q(θ|λ) ≡ θs = g(εs, λ), εs ∼ p(ε)
Intuitively, this equivalent formulation removes the sampling from the path of the gradient by removing the dependency of p(ε)
on λ. The deterministic function g(ε, λ) stores these dependencies, but remains differentiable. Thus, the gradient is able to flow
backward through g, without having to touch the actual source of nondeterminism. Monte-Carlo integration is again applied to
the resulting reformulation to obtain a noisy but unbiased estimator of the ELBO gradient which leverages the model’s gradient
information and the score function gradient to achieve significantly lower variance than the score function estimator.[27]

∇λELBO(λ) = Eq [∇λ [log p̃(g(ε, λ))− log q(g(ε, λ)|λ)]]

≈ 1

S

S∑
s=1

∇λ log p̃(g(εs, λ))−∇λ log q(g(εs, λ)|λ), with εs ∼ p(ε)

IV. EXAMPLES

A. Variational Auto-Encoder
The Variational Auto-Encoder[24] introduced the reparameterization trick to neural networks for the purpose of applying

variational inference to the low-dimensional latent space of traditional auto-encoders trained with reconstruction loss.

Fig. 13: The Variational Auto-Encoder has the same bottleneck structure as the traditional auto-encoder,
however the prbabilistic encoder now outputs variational parameters λ = [µ, σ] from which the latent
vector is then sampled. Using the reparameterization trick, the source of nondeterminism is ε ∼ N (0, I),
and the deterministic transformation is g(ε, λ) = µ + σ � ε. The probabilistic decoder then evaluates
the likelihood of the original input given the sampled latent vector.
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Fig. 14: The advantages of the Variational Auto-Encoder lie in its generative properties. It has been
shown empirically that the variational constraints placed on the latent space result in more interpretable
dimensions of variation, allowing for smooth interpolation within the latent space.[24]

B. Bayesian Neural Network

As discussed in Chapter II, the Bayesian neural network maintains probability distributions over its parameters instead
of a single point estimation. Training can be done via stochastic variational inference using the building blocks laid out in
Chapter III, though alternatives certainly exist, such as the Laplace approximation of the posterior.[29]

Using the distribution over its latent parameter space, the Bayesian neural network is able to provide probability distributions
over its predictions using the posterior predictive distribution shown in Equation 5. While integration over the entire parameter
space remains infeasible, Monte-Carlo sampling can be used here as well, with an arbitrary number of samples.

Fig. 15: Bayesian neural networks are shown empirically to drastically improve calibration in modern
neural networks, which typically suffer from over-confidence when leaving the manifold of the training
data set. Even when only the final layer of the network is Bayesian, the calibrating effects are obvious,
suggesting that the choice does not have to be a binary one between Bayesian and non-Bayesian.[14]

V. EXTENSIONS

A. Flipout

In order to apply the reparameterization trick to Bayesian neural networks, the stochasticity of the weights is typically
modeled as a sampled weight perturbation from a symmetrical distribution centered around 0. During training, mini-batches
are typically used, with a single sampled perturbation being used for each sample in the batch for computational reasons.
The Flipout method[30] proposes a random sign matrix to augment the sampled perturbation for each training sample in the
mini-batch, maintaining the same sampling distribution as long as it is symmetrical around 0, but decorrelating the gradients
of each training sample, leading to much faster convergence.
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Fig. 16: Empirical results show that Flipout leads to a dramatic increase in convergence speed, without
having a significant effect on the training and validation error.

B. Normalizing Flows

A significant drawback of variational inference approaches is that a restrictive family of distributions is usually chosen
for computational reasons, whose limited flexibility is generally not able to match the true posterior distribution, even given
infinite time. Normalizing flows are proposed as an alternative variational objective, which optimizes over a family of invertible
transformations, starting from some initial seed distribution.[31] One drawback to this method is reduced scalability, in addition
to the multiple hyper-parameters which have to be tuned.

f(z) = z + uh(w>z + b)

λ = {w ∈ RD,u ∈ RD, b ∈ R}

Fig. 17: Starting from different seed distributions q0, the normalizing flow method arrives at similar
results as more transformations are composed together, denoted by the hyper-parameter K.

C. Hierarchy

A common criticism of the Variational Auto-Encoder as a generative model relates to its tendency to produce blurry results
when scaled up to generate detailed human faces. The Deep Hierarchical Variational Auto-Encoder[32] overcomes this problem
by partitioning the latent space into L disjoint groups z = {z1, z2, . . . , zL}, with each group of latent variables being assigned its
own variational parameters. Intuitively, the goal is for each group of latent parameters to govern a different level of abstraction
in the details which are generated by the model. This goal is supported by the different scales at which the partitions are
grouped, with lower-dimensional groups governing broader aspects of the image and higher-dimensional groups having the
capacity to affect richer and more subtle details.
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Fig. 18: The NVAE[32] is able to generate realistic images with minimal blurring of details, due to the
assignment of different latent groups to different levels of detail, thereby increasing the expressivity of
the joint latent distribution. Previously, this level of quality was only achievable using the Generative
Adversarial class of models.[33]

VI. CONCLUSION

Although there is much mathematical rigour involved not only in the theory but also in the implementation tricks required
to make variational inference work well at scale, models such as the Variational Auto-Encoder and Bayesian neural network
are uniquely positioned in the amount of probabilistic information they are able to expose to the user. Generative Adversarial
Networks are widely considered to be better at generating realistic samples, but the final example in Chapter V shows comparable
or even better results with the variational approach, with the added benefit of a direct view of the latent encoding of the
underlying distribution, which GANs only model implicitly. These results show that it is impossible to say that one approach
is objectively better than the other, and that they should each be pursued further.

APPENDIX A
KULLBACK-LEIBLER DIVERGENCE ASYMMETRY

Fig. 19: Since the Kullback-Leibler divergence is not a symmetric operator, it is important to first
note the consequences of reversing the terms to construct the ELBO, as shown in Equation 7.[9] The
blue curves represent the true bimodal distribution p∗, while the red curves represent the approximate
distribution q, which is modeled as unimodal. (a) Minimizing the forward divergence KL(p∗||q) in
q typically over-estimates the support of p∗. (b-c) Conversely, minimizing the reverse divergence
KL(q||p∗) tends to under-estimate the support of p∗, however the mode of the true posterior is more
accurately matched in this particular bimodal posterior example.
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APPENDIX B
SCORE FUNCTION GRADIENT ESTIMATOR

∇λELBO(λ) = ∇λ
∫
q(θ|λ) log

p̃(θ)

q(θ|λ)
dθ

=

∫
∇λ [q(θ|λ) (log p̃(θ)− log q(θ|λ)] dθ

=

∫
∇λ [(log p̃(θ)− log q(θ|λ)] q(θ|λ) dθ

+

∫
∇λ [q(θ|λ)] (log p̃(θ)− log q(θ|λ) dθ

= −Eq [∇λ log q(θ|λ)]︸ ︷︷ ︸
0

+

∫
∇λ [q(θ|λ)] (log p̃(θ)− log q(θ|λ) dθ

=

∫
q(θ|λ)∇λ [log q(θ|λ)] (log p̃(θ)− log q(θ|λ)) dθ

= Eq [∇λ [log q(θ|λ)] (log p̃(θ)− log q(θ|λ))]

APPENDIX C
SCORE FUNCTION GRADIENT EXPECTATION

Eq [∇λ log q(θ|λ)] = Eq
[
∇λq(θ|λ)

q(θ|λ)

]

=

∫
q(θ|λ)

∇λq(θ|λ)

q(θ|λ)
dθ

= ∇λ
∫
q(θ|λ) dθ

= ∇λ1 = 0
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