
TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Uncertainty Estimation with Noisy Optimizers

Orhun Güley ORHUN.GUELEY@TUM.DE

03721364

1. Introduction

Deep learning methods have been extremely successful in the last decade. Specifically in tasks such as
only the prediction accuracy are taken into account, they became preeminent. But in tasks that requires
high risk or interpretability, high prediction accuracy is not the only metric that needed to be satisfied.
In those kinds of tasks such as autonomous driving, medical diagnosis and finance, in order to make
reliable decisions, we need uncertainty measures. As an example, autonomous vehicles are constantly
in need to make reliable decisions since one minor prediction might cost human life. Bayesian Inference
is a very effective technique that allows models to quantify uncertainty, meaning that we will have a
metric that how certain our model is on a specific input.

For simpler models, it is possible to quantify uncertainty by directly deriving the equation for poste-
rior distribution by using Bayes rule:

p(w|D) =
p(D|w)p(w)

p(D)
=

p(D|w)p(w)∫
p(D|w)p(w)

=
p(D|w)p(w)∑n
i=1 p(D|w)p(w)

(1)

However, for more complex models such as deep neural networks, it is not possible to find closed for
solution for the posterior. As a consequence, a common framework to integrate uncertainty measure
to deep neural networks is to find approximations for the posterior. Some of these approximations
techniques such as Markov Chain Monte Carlo(MCMC) and variational inference(VI) with or without
mean-field approximation have been very popular in Bayesian deep learning. Learning in deep learn-
ing is a nonlinear optimization problem. In the past years, stochastic gradient descent(SGD) and its
variations have been very popular. These variations include momentum based methods, which the al-
gorithm tries to estimate the momentum, that accelarates the convergence of the loss. In this report, I
will be summarizing the approximation of Variational Inference methods by integrating natural gradient
method into the popular optimizers used in deep learning.

Natural gradient method is applicable to probabilistic optimization models, which makes it a good al-
ternative to traditional stochastic gradient descent methods. Briefly, natural gradient methods scale the
gradient by implementing the steepest direction in the distribution space, instead of the space of param-
eters of the models, which is Euclidean. Intuitively, this approach make sense because it is not likely
that the true distance between distributions are Euclidean. It has been shown that by adding noise/per-
turbation to popular nonlinear optimizers such as Adam and RMSProp, one can perform variational
inference.

2. Background

2.1 Bayesian Inference

As briefly explained in the previous eqn. (1), given a dataset D = {(xi, yi)ni=1}, Bayesian neural
networks tries to find the posterior distribution of the weights, given the training data, p(w|D). The
calculation of posterior is obtained by putting a prior distribution p(w) on weights and then using Bayes

1

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

rule(1), we have the need calculate p(D|w)p(w)/p(D). The untractable part of this equation is the cal-
culation of the normalizing constant, in which we need to calculate the integral p(D) =

∫
p(D|w)p(w).

Since the calculation of posterior distribution is not tractable in neural networks, Bayesian methods tries
to find an approximation for true posterior p(w|D). Several popular methods such as variational in-
ference, Markov Chain Monte Carlo have been used for approximating the posterior distribution but in
practice, they are rarely used due to their computational expense. As an alternative for those methods,
less theoretical methods such as Monte Carlo Dropout(MC-Dropout) are used in the last years.

In the papers I am going to summarize(Zhang et al., 2018; Khan et al., 2018; Osawa et al., 2019), it
has been shown that by modifying and perturbing some of the commonly used nonlinear optimizers,
they perform variational inference.

2.1.1 KULLBACK-LEIBLER DIVERGENCE

Kullback-Leibler divergence has its roots from relative entropy in information theory. It can be defined
as a non-symmetric and non-negative measure between two probability distributions. It can be defines
as follows:

KL (q(x)‖p(x) =

∫
q(x) log

q(x)

p(x)
dx =

∑
x∈X

p(x) log
p(x)

q(x)

where the integral version represents the continuous case and the summation version represents the dis-
crete case. KL divergence is a frequently used measure while doing Bayesian inference using variational
inference, where we try to approximate the true posterior with a candidate distribution q.

2.1.2 VARIATIONAL INFERENCE

Since the calculation of posterior distribution is not tractable in complex models such as deep neural
networks, we use variational inference, where we use a distribution qθ(w), parametrized by θ. As
an example, if we model our posterior to be a Gaussian distribution p(w|D) := N (w|µ, diag(σ2))
or p(w|D) := N (w|µ, Σ), the parameters would be θ = (µ, σ) or θ = (µ,Σ), where µ, σ ∈ RD
and Σ ∈ RDxD. In order to track how close is our approximate posterior distribution qθ to the true
posterior distribution, we need a distance metric. We know from the previous section that KL divergence
can be interpreted as a distance metric(theoretically not a distance metric since KL[x‖y] 6= KL[y‖x])
between two probability distributions, one solution proposed by Bishop (2006) is finding the parameters
of distribution qθ by minimizing the KL[q(w)‖p(w|D)]. We see that minimizing the KL divergence is
equal to maximizing a variational objective.

θ? = arg min
θ

KL[qθ(w)‖p(w|D)]

= arg min
θ

∫
qθ(w) log

qθ(w)

p(w|D)
dw

= arg min
θ

∫
qθ(w) log

qθ(w)p(D)

p(w)p(D|w)
dw

= arg min
θ

Eqθ(w)[log qθ(w)− log p(D|w)− log p(w) + log p(D)︸ ︷︷ ︸
Not

dependent
of θ

] (2)

= arg min
θ

Eqθ(w)[log qθ(w)− log p(D|w)− log p(w)]

= arg min
θ

KL[qθ(w | θ)‖p(w)]− Eq(w|θ)[log p(D | w)]︸ ︷︷ ︸
F(D,θ)=−L(θ,q)

(3)

The objective function stated in eqn.(3) is called variational free energy. If we denote the variational free
energy function as F(D, θ), we can rewrite the eqn.(3) as

KL[qθ(w)‖p(w|D)] = F(D, θ) + log p(D) (4)

2

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Additionally, we can interpret the negative variational free energy function as a lower bound for the log
marginal likelihood term log p(D). Let’s define the term L(θ, q) as L(θ, q) = −F(D, θ). log p(D) is
not dependent on parameters θ. Then, we can rewrite the eqn(4) as

KL[qθ(w)‖p(w|D)] = −L(θ, q) + log p(D) (5)

As stated in the Section(2.1.1), the KL divergence is always non-negative. That’s why the L(θ, q)
describes a lower bound for the marginal likelihood term log p(D), and L(θ, q) is called evidence lower
bound(ELBO).(6)

L(θ, q) = log p(D)−KL[qθ(w)‖p(w|D)]︸ ︷︷ ︸
≥0

(6)

L(θ, q) ≤ log p(D) (7)

As stated in the Section(2.1.1), the KL divergence is always non-negative. That’s why the L(θ) de-
scribes a lower bound for the marginal likelihood term log p(D), and L(θ) is called evidence lower
bound(ELBO). As a result, minimizing the KL divergence is equal to maximizing the ELBO term.

2.1.3 REPARAMETRIZATION TRICK

Reparametrization trick is a simple deterministic transformation that helps while sampling from a dis-
tribution. In case that we set out variational posterior to a Gaussian distribution p(w|D) := N (w|µ, Σ),
our estimated parameters will be θ = (µ,Σ). Normally, while doing backpropagation we need to take
the gradients for the Gaussian distribution. But using reparametrization trick stated below, we can free
our gradients of µ and Σ from the Gaussian distribution by using a parameter-free noise ε.

1. Draw samples from noise ε ∼ N (0, I)

2. Set w = t(ε, θ = {µ,Σ}) = µ+ Σ ◦ ε

2.2 Natural Gradient

2.2.1 INTRODUCTION

In optimization of the deep learning cost functions, learning takes place in the space of parameters, which
is not Euclidean but actually Riemannian. And popular nonlinear optimizers such as Adam, stochastic
gradient descent(SGD) are operating on the Euclidean space. Natural gradient method proposed by
(Amari, 1997, 2016) takes its roots from information geometry, which aims to change the gradients
direction from the steepest direction in the Euclidean space to the steepest direction the Riemannian
space. Let’s me briefly introduce what is Riemannian metric and Fisher Information Matrix.

2.2.2 RIEMANNIAN METRICS AND FISHER INFORMATION MATRIX

Let’s consider a data point θ = (θ(1), ..., θ(n)) in a n-dimensional manifold M. The tangent space Tθ

at point θ is defined as a vector space spanned by n tangent vectors along the coordinate curves of θi,
denoted as {e1, . . . , en} by Amari (2016). And these tangent vector ei is identified with the partial
derivative operator as below.

ei ≈ ∂i =
∂

∂θ(i)
eif = ∂if(θ)

where f(θ) is a differentiable function. For the manifold of probability distributions, the expression for
a tangent vector is

ei ≈ ∂i log p(x|θ)
3

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Figure 1: Tangent space Tθ and basis/tangent
vectors ei.(Figure taken from Amari (2016))

Figure 2: Infinitesimal vector ∂i and
Tθ.(Figure taken from Amari (2016))

Please see 1 and 2 for a visual geometric interpretation.

Let G = (gij) a matrix, which is consisting of the inner products of the basis vectors of our tangent
space Tθ below.

gij(θ) = 〈ei, ej〉

G is a positive-definite matrix which is dependent on θ and it is a metric tensor where its components
change to

gθoθn = J iθoJ
j
θn
gij where Ji =

∂θin

∂θjo
and Ji =

∂θjo
∂θin

by coordinate transformation. A manifold is a Riemannian manifold when a metric tensor defined.

Back to our case, we have a manifold of probability distributions and we can define an inner product by
using the stochastic expression

〈ei, ej〉 = E
[
∂i log p(x|θ)∂j log p(x|θT)

]
(8)

In matrix notation, we have the resulting matrix

F = E
p(x|θ)

[
∇θ log p(x|θ)∇θ log p(x|θ)T

]
(9)

which is called the Fisher Information Matrix(FIM). It is trivial to see that the FIM is the covariance
matrix of our likelihood function and it intuitively makes sense that we are scaling our gradient with
a covariance matrix of our likelihood function in order to change gradient directions to probability
distribution space. In our case, since we are using using a variational objective function instead of the
maximum likelihood, our FIM becomes

F = E
qθ(w)

[
∇θqθ(w)∇θqθ(w)T

]
(10)

2.2.3 NATURAL GRADIENT: STEEPEST DIRECTION IN THE RIEMANNIAN MANIFOLD

As it was briefly mentioned in Section 2.2, natural gradient method scales the gradient with a Rieman-
nian metric, which corresponds to the inverse of its FIM of the score function. In probabilistic setting,
this score function is a probability distribution. The likelihood function can be a proper choice in this
task, but in a Bayesian setting that we are trying to approximate the true posterior, our variational poste-
rior qθ(w) would be the right choice for score function. This scaling help the optimizer to operate in a

4

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Riemannian manifold.

Deep neural networks are placed into the category of singular models since they have unidentifiable
regions in their objective functions. A model is classified as a singular model(Lin) if it has unidentifiable
or det(F) = 0 for some w. In such regions, learning becomes really slow and this issue is known as the
plateau phenomena(Amari (2016)). Natural gradient method overcomes this issue.

Figure 3: Gradient and vs natural gradient directions
for mean of variational distribution q. VI with a di-
agonal covariance is applied to the posterior p(x, y) ∝
exp

[
−9(xy − 1)2 − x2 − y2

]
. Figure taken from Kuusela

et al. (2009).

Figure 4: Arrows correspond the gradients and the curves
correspond the path of gradients. Figure taken from Salim-
beni et al. (2018)

A nice visual example comparing natural gradient with gradient is given by the Figure 3. Kuusela et al.
(2009) used natural gradient method for their work on mixture of Gaussians. Figure 3 clearly that the
natural gradient enhances the updates in the directions with more uncertainty. Another visual example
can be find in Figure 4, which is taken from the work by Salimbeni et al. (2018). The contours in the 4
is from a Gaussian Process(GP) with a Bernoulli likelihood and variational posterior. It is trivial the see
that the direction in natural gradient is much more scaled than the ordinary gradient. Additionally the
path for natural gradient is taking small steps and does not follow the contours different from ordinary
gradient’s path.

Let ∇̃θ be the term for natural gradient. Then, the mathematical equation for the natural gradient of
our variational objective is defined as

∇̃θL(θ, q)
def
= ∇θL(θ)Ez

[
(∇ log pθ(z))T (∇ log pθ(z))

]−1

def
= ∇θL(θ, q)F−1

(11)

Until now, we talked about natural gradient method enhance the gradient descent by scaling the gradient
with FIM, which allows us to find the steepest direction in in the KL-divergence in each step. As
formalized by Pascanu and Bengio (2014), let us define our statement as a constrained optimization
problem. We are trying to find the ∆θ that minimizes the second order Taylor expansion of L with the
constraint that the KL-divergence between pθ and pθ+∆θ is a constant:

arg min∆θ L(θ + ∆θ)
s.t. KL (pθ‖pθ+∆θ) = const.

(12)

5

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

By setting the KL divergence as a constant, we guarantee that we will have constant speed while moving
along the manifold of our objective function, which prevents the update slowed down in a curvature or
plateau.
Assuming that ∆θ → 0, we can approximate KL divergence by its second order Taylor series:

KL (pθ‖pθ+∆θ) ≈ KL (pθ‖pθ)︸ ︷︷ ︸
=0

−Ez [∇ log pθ(z)]︸ ︷︷ ︸
=0

∆θ − 1
2∆θTEz

[
∇2 log pθ

]
∆θ

= 1
2∆θTEz

[
−∇2 log pθ(z)

]
∆θ

= 1
2∆θTF∆θ

(13)

As described in Section 2.1.1, KL-divergence between same distributions is equal to zero. And the
second term is also zero, due to E[∇ log p(x | θ)]p(x|θ) =

∫
∇ log p(x|θ)p(x|θ)dx =

∫ ∇p(x|θ)
p(x|θ) p(x |

θ)dx =
∫
∇p(x|θ)dx = ∇

∫
p(x|θ)dx = ∇1 = 0

Since we have derived the second order Taylor approximation of KL-divergence, now we can find the
distance that minimizes our loss function L(θ). Let me denote the minimum ∆θ that gives us the
constant change in KL-divergence as (∆θ)∗. Put simply: the distance (∆θ)∗ gives us the most change
in KL-divergence per unit distance. We can find the minimum distance from this minimization:

(∆θ)∗ = arg min
∆θ

L(θ + ∆θ)

s.t. KL (pθ‖pθ+∆θ) = c
(14)

We can write the equivalent optimization problem in Lagrangian formulation in order to transform the
constrained optimization problem to a unconstrained optimization problem. We use the second order
Taylor series approximation of KL-divergence we had in eqn.(13) and the first order Taylor approxima-
tion of L(θ + d) to approximate the objective function.

(∆θ)∗ = arg min
∆θ

L(θ + ∆θ) + λ (KL [pθ‖pθ+∆θ]− c)

≈ arg min
∆θ

L(θ) +∇θL(θ)T(∆θ) +
1

2
λ(∆θ)TF(∆θ)− λc

(15)

Since we get rid of the constraints, we just need to set the derivative with respect to d to zero:

0 =
∂

∂(∆θ)
L(θ) +∇θL(θ)T(∆θ) +

1

2
λ(∆θ)TF(∆θ)− λc

= ∇θL(θ) + λF(∆θ)

λF(∆θ) = −∇θL(θ)

(∆θ) = − 1

λ
F−1∇θL(θ)

(16)

Now, we have that up to a constant factor 1/λ, we get the optimal direction of the gradients by taking
account the local curvature space defined by the inverse of FIM. The term 1/λ can be interpreted as a
learning rate and at the end we have the natural gradient definition we defined at eqn.(11).

3. Bayesian Inference with Noisy/Perturbed Natural Gradients

We were introduced in Section 2.1 that how to Bayesian inference work in deep neural networks. We
can make use of reparametrization trick by using a noise from a Gaussian distribution in order to prevent
avoid using approximations for the gradient of Gaussian distribution. For stochastic gradient ascent, this
is a straightforward task. We can update our variational parameters as below:

µt+1 = µt + ρt∇̂µLt, σt+1 = σt + δt∇̂σLt (17)

6

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

where t is the iteration number, ∇̂µLt is the gradient estimates for the batch and ρt, δt are the learning
rates.

In machine learning research, there are 2 major variants of natural gradient that are frequently in use.
The first one in named natural gradient for point estimation(NGPE) and the second one is natural gradi-
ent for variational inference(NGVI).

As the name suggests, NGPE tries to estimate just the predictive distribution p(y|x,w) by optimizing
over a loss function. For this task, the FIM is constructed by calculating the
F = Ep(y|x,w)[∇θ log p(y|x,w)∇θlog p(y|x,w)T] ≈ Covx∼p(D),y∼p(y|x,w)[∇w log p(y|x,w)].

For NGVI, we now need to combine our background from Section 2.1 and 2.2. In variational Bayesian
deep learning, we try to fit the parameters of a variational posterior qθ(w) to maximize our variational
objective ELBO((3)). Integrating natural gradient into this setting is simple. We need to compute the
FIM of our variational posterior q instead of the predictive distribution, which is
F = Eqθ(w)[∇θlog qθ(w)∇θlog qθ(w)T] ≈ Covw∼qθ(w)[∇w log qθ(w)].

3.1 Variational Inference using Noisy Natural Gradient

Zhang et al. (2018) show that we can approximate NGVI updates with a variaant of NGPE with adaptive
noise which they called Noisy Natural Gradient(NNG). This insight is critical since it allow us to train
variational posteriors with the noisy versions of the well-known optimizers.

Although we talked about the reparametrization trick for derivative of the Gaussian distribution, Zhang
et al. (2018) built their work on the Gaussian gradient estimator of Opper and Archambeau (2009) as
given below:

∇µEN (µ,Σ)[f(w)] = EN (µ,Σ) [∇wf(w)]

∇ΣEN (µ,Σ)[f(w)] = EN (µ,Σ)

[
∇2

wf(w)
] (18)

Zhang et al. (2018) assume that the variational posterior q is a multivariate Gaussian parametrized by
θ = (µ,Σ). They build their proof on eqn. (18), and determine that the natural gradient of ELBO with
respect to µ and the precision matrix Λ = Σ−1:

∇̃µL = Λ−1Eq[∇w log p(D|w) +∇w log p(w)︸ ︷︷ ︸
gradient of MAP

]

∇̃ΛL = −Eq
[
∇2

w log p(D|w) +∇2
w log p(w)

]
−Λ

(19)

Firstly, it is observed that the the term inside the expectation in gradient of ELBO with respect to µ is
MAP estimation of w. Secondly, the update for µ is preconditioned by Σ−1, which implies a faster
movement in the higher posterior uncertainty - known as the plateau regions -. The equation for the
gradient with respect to Λ implies that we have a fixed value for Λ when we set the gradient to zero:

Λ = −Eq
[
∇2

w log p(D | w) +∇2
w log p(w)

]
(20)

It is trivial the see that for λ = 1, Λ corresponds to the expected Hessian of − log p(w,D), which look
appears to be like the Newton-Raphson update(xn+1 = xn− f ′(xn)

f ′′(xn) instead of xn+1 = xn− f(xn)
f ′(xn)). For

easiness, they assume a spherical Gaussian prior w ∼ N (0, I/η), and then we have∇2
w log p(w) = ηI.

In each iteration, we draw samples from (x, y) ∼ p(D) and w ∼ qθ(w), and apply the following natural
gradient updates based on eqn. (19):

µ← µ+ αΛ−1
[
∇wlog p(y|x,w)− η

Nw
]

Λ←
(

1− β
N

)
Λ− β

[
∇2

w log p(y | x,w)− η
N I
] (21)

7

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

where α and β are separate learning rates for µ and Λ. Imprecisely, the update rule for Λ implies the ex-
ponential moving average of the Hessian and the update rule for µ implies a stochastic Newton-Raphson
step.

The update rule has two problems. The first one is that the Hessian might be hard to compute since deep
neural networks use activation functions such as ReLU, which is not differentiable in every point. And
the second problem is that the Hessian might have negative eigen-values if the negative log-likelihood is
not convex, which means that our update for Λ might not be positive semi-definite. Zhang et al. (2018)
proposed using the NGPE FIM F = Covx∼p(D),y∼p(y|x,w)[∇w log p(y|x,w)], which prevents both of
the problems stated:

Λ←
(

1− β

N

)
Λ + β

∇w log p(y|x,w)∇wlog p(y|x,w)T︸ ︷︷ ︸
F

+
η

N
I

 (22)

This approximation of Hessian assures that Λ will be positive semi-definite and it will allow tractable
approximations, which is used in K-FAC. This approximation of FIM is proposed by Graves (2011),
which is known as Graves approximation.

With a fixed prior variance η, Λ will become a damped version of the moving average of the FIM and
this approximation can be rewritten as

Λ = NF + ηI

F← (1− β̃)F + β̃[∇w log p(y|x,w)∇wlog p(y|x,w)T]
(23)

After defining alternative learning rates as α̃ = α/N and β̃ = β/N , we also edit the update rule of µ as

µ← µ+ α̃
(
F +

η

N
I
)−1 [

Dw − η

N
w
]

(24)

Pay attention that the new update rule for µ resembles NGPE since it can be viewed as a natural gradient
update with the damped version of the FIM. Even though we are doing NGPE, we can sample the
weight from the variational posterior q, which is a normal distribution with w ∼ N

(
µ,Λ−1

)
, where

Λ−1 = (NF + ηI)−1. With this update rules, one can make Bayesian inference with a noisy version of
natural gradient method.

3.1.1 NOISY ADAM

As you might notice, until now we treat our covariance matrix Λ−1 as a full covariance Gaussian. This
is unrealistic since the number of parameters needed for a full covariance matrix is (dim(w))2, which is
unrealistic for deep neural networks. Zhang et al. (2018) proposed a solution by approximating the FIM
with a diagonal matrix f . For their noisy natural gradient version of Adam, the updates for µ and f are

µ← µ+ α̃
[
Dw − η

Nw
]
/
(
f + η

N

)
f ← (1− β̃)f + β̃Dw2 (25)

3.1.2 KRONECKER-FACTORED APPROXIMATE CURVATURE

Calculating the inverse of the FIM is the major challenge while using the natural gradient method in-
tegrated to optimizers. Large deep neural networks have millions of parameters and calculating this
inverse in naive way is computationaly expensive. K-FAC algorithm proposed by Martens and Grosse
(2020) uses a Kronecker-factored approximation to the FIM to perform efficient approximate natural
gradient updates. Let l be the lth layer of the neural network. Denote the activation function at layer l as
al ∈ Rn1 ,, the weight matrix at layer l as Wl ∈ Rn1×n2 , and the output at layer l as sl ∈ Rn2 ,. Then,
we have sl = WT

l al. For easiness, the following notations are defined:

8

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Dv = ∇v log p(y | x,w) and gl = Dsl

Accordingly, the gradient of weights at layer l is DWl = alg
T
l . This gradient formulation help K-FAC

to decouple the FIM Fl by approximating al and gl as independent:

Fl = E
[
vec {DWl} vec {DWl}>

]
= E

[
glg
>
l ⊗ ala

>
l

]
≈ E

[
glg
>
l

]
⊗ E

[
ala
>
l

]
= Sl ⊗Al = F̃l

(26)

Consequently, assuming that the layers are independent, the whole FIM F̃ can be approximated as
block diagonal consisting of layerwise FIMs F̃l. By this approximation, we circumvent the quadratic
storage cost of the exact FIM by just storing the values for Ãl and S̃l. Another critical advantage of
this approximation is that we now have a tractable computation of the approximate natural gradient as
below:

F̃−1
l vec {∇Wl

h} = S−1
l ⊗A−1

l vec {∇Wl
h}

= vec
[
A−1
l ∇Wl

hS−1
l

] (27)

With the approximation of inverse of FIM at eqn. (27), the calculation for the natural gradient becomes
much more storage and computation efficient.

3.1.3 NOISY K-FAC WITH MATRIX VARIATE GAUSSIAN POSTERIOR

Matrix variate Gaussian distribution is a generalization of multivariate Gaussian distribution for matrix
random variables, which take into account for both row-wise and column-wise correlations. It is more
definitive than having a diagonal covariance matrix for a multivariate Gaussian distribution.

From section(3.1.2), we know that for each weight matrix in the network, we can calculate the inverse
FIM with Kronecker-factored approximation as in eqn. (27). By plugging in this inverse FIM approxi-
mation to eqn. (23), we will have the MVG posterior. The update rule for Al and Sl is as follows:

Al ← (1− β̃)Al + β̃ala
>
l

Sl ← (1− β̃)Sl + β̃DslDs>l
(28)

Additionally, since Al and Sl matrices estimated from empirical covariances, they are positive semi-
definite. Since we still need to add the Hessian of the prior distribution, we still do not have a MVG
posterior. However, since we set our prior as a spherical Gaussian, we can approximate the Σ using a
damping trick proposed by Martens and Grosse (2020). With this trick, Σl decomposes as the Kronecker
product of two terms:

Σl =
1

N

[
Sγl
]−1 ⊗

[
Aγ
l

]−1

,
1

N

(
Sl +

1

πl

√
η

N
I

)−1

⊗
(

Al + πl

√
η

N
I

)−1 (29)

9

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Using this factorization, we have MVG posteriorMN
(
Wl; Ml,

1
N

[
Aγ
l

]−1
,
[
Sγl
]−1
)

, where the factor
1/N is arbitrarily assigned to the first factor. Please see Algorithm 1 to see noisy K-FAC as pseudo-code.

Algorithm 1: Noisy K-FAC. Subscript l denotes layers, . We assume zero momentum for
simplicity. Differences from standard K-FAC are shown in red

input : α: Stepsize
input : β: Exponential moving average parameter
input : η, γex,: prior variance, extrinsic damping term
input : Stats and inverse update intervals Tstats and Tinv

k ← 0 and initialize {µl}Ll=1 , {Sl}
L
l=1 , {Al}Ll=1 Calculate the intrinsic damping term

γin = η
N , total damping term γ = γin + γex.

while not converged do
k ← k + 1
Wl ∼MN

(
Ml,

1
N

[
Aγin
l

]−1
,
[
Sγinl

]−1
)

if k ≡ 0 (modTstats) then
Update the factors {Sl}Ll=1 , {Al}L−1

l=0 using eq. (12)

if k ≡ 0 (modTinv) then

Calculate the inverses
{[

Sγl
]−1
}L
l=1

,
{[

Aγ
l

]−1
}L−1

l=0
using eq. (13).

Vl = ∇Wl
log p(y | x,w)− γin ·Wl

Ml ←Ml + α
[
Aγ
l

]−1
Vl

[
Sγl
]−1

3.2 Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam

The work proposed by Khan et al. (2018) is directly approximate the posterior distribution q instead
of approximating it with a variant of NGPE methods. As stated in Section 3, NGVI methods calculate
the natural gradient by scaling the gradient with FIM of the approximate posterior q. They select the
prior distribution and the variational posterior from a Gaussian distribution with diagonal variances,
where p(w) := N (w,θ | 0, I/η), and qθ(w) := N

(
w,θ | µ, diag

(
σ2
))

. η ∈ R corresponds to the
precision parameter with η > 0, and µ, σ ∈ RD correspond to mean and standard deviation of q. They
build their work upon the natural gradient method of Salimbeni et al. (2018), where they propose the
following update:

µt+1 = µt + βtσ
2
t+1 ◦

[
∇̂µLt

]
σ−2
t+1 = σ−2

t − 2βt

[
∇̂σ2Lt

] (30)

where βt > 0 and a ◦ b refers to the element-wise multiplication of a and b. Observe that that this
update differs from eqn. (17) in one important aspect: the learning rate βt in NGVI update is adapted by
variance. This update requires a constraint on variance σ2 > 0. But constraint is eliminated by using a
FIM approximation as we will see in next sub-section.

3.2.1 VARIATIONAL ONLINE GAUSS-NEWTON (VOGN)

In their work, Khan et al. (2018) show that we can express the NGVI update in terms of the MLE
objective. Let’s denote the MLE objective and and minibatch stochastic-gradient estimates as

f(θ) :=
1

N

N∑
i=1

fi(θ), ĝ(θ) :=
1

M

∑
i∈M
∇θfi(θ), (31)

where fi(θ) := − log p (Di | θ) corresponds to negative log-likelihood of i ’th data example, and the
minibatchM contains M examples chosen uniformly at random. With the same way, we can approxi-

10

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

mate the Hessian which is denoted by ∇̂2
θθf(θ). They show the the NGVI update can be written in terms

of stochastically approximated Hessian of f as

µt+1 = µt − βt (ĝ (θt) + η̃µt) / (st+1 + η̃) , st+1 = (1− βt) st + βt diag
[
∇̂2
θθf (θt)

]
(32)

where a/b denote the element-wise division, and the variational posterior q is approximated using one
Monte-Carlo (MC) sample θt ∼ N

(
θ | µt,σ2

t

)
with σ2

t := 1/ [N (st + η̃)] and η̃ := η/N. This up-
date resembles the online-Newton meghod, since st contains an online estimate of the diagonal of the
Hessian. That’s why this method is called “variational online-Newton” (VON).

Unfortunately, since the f is non-convex, we can still have a negative variance σ2. Khan et al. (2018)
overcome this issue by using the following approximation of the Hessian:

∇2
θjθj

f(θ) ≈ 1

M

∑
i∈M

[
∇θjfi(θ)

]2
:= ĥj(θ) (33)

where θj is the j ’th element of θ. This approximation will always be non-negative, therefore if the
initial σ2 at t = 1 is positive, it will keep being positive in the next iterations as well. As a result, the
new update rule for st becomes

st+1 = (1− βt) st + βtĥj(θ) (34)

This the approximated Hessian for the update of st we have the Variational Online Gauss-Newton
(VOGN). Unfortunately, the implementation is not trivial with the current existing deep learning frame-
works since they do not support computation of individual gradients which is required for the Hessian
approximation at eqn. (33).

Demonstration of VOGN method for deep learning is done by Osawa et al. (2019) recently, where they
propose a distributed training scheme for VOGN method. Since VOGN updates are similar to Adam,
they integrate the momentum term into the algorithm which increases the speed of convergence in deep
learning.

They also parallelise the the computation of Monte-Carlo samples over multiple GPU, which increase
the speed. After the calculation of different MC samples on different GPU, they averaged over the losses
and gradients in single GPU and continues the rest of the algorithm on single GPU. The combination
of two parallelism techniques with different MC samples for different inputs theoretically reduces the
variance during the training. As it is already discussed in the previous paragraph, there is a need of extra
computation due to the fact the current deep learning frameworks are not supporting the access of the
gradient for individual samples. But since this is not a theoretical limitation, that can be implemented in
the future. Please see the pseudocode in (5) for details:

3.2.2 VARIATIONAL RMSPROP(VPROP)

As a consequence of the previously mentioned problems of implementing VOGN, an approximate Hes-
sian by gradient magnitude(GM) is proposed:

∇2
θjθj

f(θ) ≈

[
1

M

∑
i∈M
∇θjfi(θ)

]2

= [ĝj(θ)]2 (35)

Instead of computing the sum of squared gradients as it is in GGN, this approximation computes the
square of the sum of gradients, which is also used by the well-known optimizer RMSprop:

θt+1 = θt − αtĝ (θt) / (
√

st+1 + δ) , st+1 = (1− βt) st + βt [ĝ (θt) ◦ ĝ (θt)] (36)

11

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Figure 5: Table is prepared from the experimental results of (Khan et al., 2018; Zhang et al., 2018)

where st is the vector that adapts the learning rate and, δ is a small scalar added to avoid dividing by
zero. With this GM approximation of Hessian and minor modifications in the update equations, VON
update look like very similar to RMSprop. Other that using the GM approximation, the only difference
is the st+1 term in eqn.(32) should be square rooted as below:

µt+1 = µt − αt(ĝ(θt) + η̃µt)/(
√

st+1 + η̃), st+1 = (1− βt) st + βt [ĝ (θt) ◦ ĝ (θt)] (37)

where θt ∼ N
(
θ | µt, σ2

t

)
with σ2

t := 1/[N(st + η̃)]. Red parts correspond to the differences from
standart RMSprop. This sampling is done by reparametrization trick, mentioned in the Section 2.1.3.
This reparametrization implies weight perturbation, where you add random noise with variance σ2

t to
the mean values of the weights. With this method, we can perform variational inference.

The approximation performance of the GM method is also an important point. Obviously, GM approx-
imation is not the best approximation for Hessian computation but Khan et al. (2018) provide a proof
that the given a minibatch of size M, the expectation of the GM approximation is somewhere between
the GGN and square of the full-batch gradient.

3.2.3 VARIATIONAL ADAM(VADAM)

Momentum methods generally have the form of Polyak’s heavy ball method

θt+1 = θt + ᾱt∇θf1 (θt) + γ̄t (θt − θt−1) (38)

where f1 is the objective function we are maximizing and the last term is momentum. They propose
natural-momentum version of eqn.(38) by replacing the Euclidean distance with KL divergence.
The variational posterior q is assumed to be an exponential-family distribution with natural parameter η
and proposed the following natural-momentum method:

ηt+1 = ηt + ᾱt∇̃ηLt + γ̄t (ηt − ηt−1) (39)

12

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

where ∇̃ it the natural-gradients with respect to natural parameter space and the gradient scaled by the
Fisher information matrix of q(θ). They show that the eqn.(39) can be expressed as VON update with
momentum:

µt+1 = µt − ᾱt
[

1

st+1 + η̃

]
◦ (∇θf (θt) + η̃µt) + γ̄t

[
st + η̃

st+1 + η̃

]
◦ (µt − µt−1)

st+1 = (1− ᾱt) st + ᾱt∇2
θθf (θt)

(40)

where θt ∼ N
(
θ | µt, σ2

t

)
with σ2

t := 1/[N(st + η̃)]. By rewriting these updates, VON update with
momentum become pretty similar to standart adam updates:

θt+1 = θt − α̃t

[
1√

ŝt+1 + δ

]
◦ ∇θf (θt) + γ̃t

[√
ŝt + δ√
ŝt+1 + δ

]
◦ (θt − θt−1)

ŝt+1 = γ2ŝt + (1− γ2) [ĝ (θt)]
2

(41)

where α̃t, γ̃t are appropriately defined in terms of the Adam’s learning rateα and γ1 : α̃t := α (1− γ1) /
(
1− γt1

)
and γ̃t := γ1

(
1− γt−1

1

) (
1− γt1

)
. Red parts correspond to the differences from standart Adam(see Al-

gorithm 3 for the details).

Algorithm 2: Noisy Adam. Differences
from standard Adam are shown in red.
input : α: Stepsize
input : β1, β2: Exponential decay rates for updating

µ and f
input : , η, γex,: prior variance, extrinsic damping

term

m← 0 ;
Calculate the intrinsic damping term γin = η

N
, total

damping term γ = γin + γex.
while not converged do

w ∼ N
(
µ, 1

N
diag (f + γin)

−1)
g← ∇w log p(D|w)
m← β1 ·m+ (1− β1) · (g + γin ·w)
f ← β2 · f + (1− β2) · (g ◦ g).

(Update momentum)
m̃←m/

(
1− βk1

)
m̂← m̃/(f + γ)
µ← µ+ α · m̂ (Update parameters)

Algorithm 3: Vadam. Differences from
standard Adam are shown in red
input : α: Stepsize
input : β1, β2: Exponential decay rates for updating

µ and f
input : η:prior variance

m← 0 ;
while not converged do

w ← µ+ σ ◦ ε, where
ε ∼ N (0, I),σ ← 1/

√
Ns+ η

g← −∇ log p (Di | θ)
m← β1m+ (1− β1) (g + µ η

N
)

s← β2s+ (1− β2) (g ◦ g)
m̂←m/

(
1− βt1

)
, ŝ← s/

(
1− βt2

)
µ← µ− αm̂/(

√
ŝ+ η

N
)

4. Comparison of Noisy/Perturbed Optimizers

Noisy Adam(2) and Vadam(3) methods are algorithmically very similar to each other and they are both
easy to implement. The probabilistic modelling is also quite similar since they both use spherical Gaus-
sian distribution for prior and Gaussian distribution with diagonal covariance for approximate posterior.
Two optimizer differentiate from each other with their gradient estimations of Gaussian. Noisy Adam
uses Oper Estimator while Vadam is using reparametrization trick. Another difference of these opti-
mizers is that the derivation of Vadam takes the natural-momentum estimation into the account from
Polyak’s heavy ball method, which noisy Adam doesn’t provide. In practice, those two methods are
shown to perform very similar, with slightly better results on noisy Adam.

The distributional version of VOGN proposed by Osawa et al. (2019) also employs momentum term,
which has also a Adam like update. The only difference is that the algorithm is implemented in dis-
tributed manner and more critically, the Hessian approximation used for this method is Generalized
Gauss Newton(GGN) approximation, which is a better approximation than the Gradient Magnitude(GM)

13

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Noisy Adam Vadam Noisy K-FAC VOGN
Prior Spherical Gaussian Spherical Gaussian Spherical Gaussian Spherical Gaussian

Posterior Gaussian with diagonal
covariance

Gaussian with diagonal
covariance

Gaussian with diagonal
covariance

Gaussian with diagonal
covariance

Hessian Approximation Gradient Magnitude(GM) Gradient Magnitude(GM) Gradient Magnitude(GM)
Generalized Gauss
Newton(GGN)

Gradient Estimators
of Gaussian Opper Estimator Reparametrization Trick Opper Estimator Reparametrization Trick

Table 1: Difference and similarities between the noisy optimizer summarized.

approximation used in Vadam, Noisy Adam and Noisy K-FAC. As it is stated in Section (3.2.1), the
downside of this approximation(eqn. 33 and tenth line in Figure 5) is that there is a need of accessing
the gradients of individual samples which is not supported with the current deep learning frameworks
and this slows down the update.

Different from the other methods, the approximate posterior choice for Noisy K-FAC is a matrix-variate
Gaussian(MVG) distribution. That give Noisy K-FAC the ability to capture the correlations between
weights since MVG has two covariance matrices. As an example, if we have a weight matrix W ∈ Rnxd,
the number of parameters to represent MVG covariance(symmetric positive semi-definite A ∈ Rnxn and
symmetric positive semi-definite S ∈ Rdxd) would be n2+d2

2 . For a multivariate Gaussian with diagonal
covariance matrix, it will be nd and for a multivariate Gaussian with full covariance matrix, it would be
n2d2

2 . As a result, MVG has a more compact representation than a diagonal covariance matrix. Please
see Table 1 to see the differences and similarities between the noisy optimizers in tabularized fashion.

5. Evaluation

5.1 Noisty Optimizers in Regression Tasks

For regression tasks, the optimizers are experimented with the datasets from UCI collection. The exper-
imental setup done by Zhang et al. (2018) and Khan et al. (2018) is not exactly the same but similar.
They both used a neural network with one hidden layer and 50 hidden units(Zhang et al. (2018) used
100 units for 2 largest datasets) with ReLU activation function.

Noisy Adam(3.1.1) and Vadam(3.2.3) are shown to perform very similar, with slightly better results
on noisy Adam. Both have also compared to other popular Bayesian deep learning methods such as
black box variational(BBVI) inference and MC-Dropout. MC-Dropout outperforms both versions of
Adam. The convergence rate is another topic which is discussed by (Zhang et al., 2018; Khan et al.,
2018), the plots in Figure 6 clearly shows that VOGN and Vadam converges mush faster that BBVI.

On the other hand, Noisy K-FAC have comparable performance with MC-Dropout, with a slightly

Figure 6: Table is prepared from the experimental results of (Khan et al., 2018; Zhang et al., 2018)

14

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Test log-likelihood
Dataset MC-Dropout BBVI Vadam Noisy Adam Noisy K-FAC
Boston -2.46 +/- 0.06 -2.73 +/- 0.05 -2.85 +/- 0.07 -2.558 +/- 0.032 -2.417 +/- 0.029
Concrete -3.04 +/- 0.02 -3.24 +/- 0.02 -3.39 +/- 0.02 -3.145 +/- 0.023 -3.039 +/- 0.025
Energy -1.99 +/- 0.02 -2.47 +/- 0.02 -2.15 +/- 0.07 -1.629 +/- 0.020 -1.421 +/- 0.005
Kin8nmm 0.95 +/- 0.01 0.95 +/- 0.01 0.76 +/- 0.00 1.112 +/- 0.008 1.148 +/- 0.007
Naval 3.80 +/- 0.01 4.46 +/- 0.03 4.72 +/- 0.22 6.231 +/- 0.041 7.079 +/- 0.034
Power -2.80 +/- 0.01 -2.88 +/- 0.01 -2.88 +/- 0.01 -2.803 +/- 0.010 -2.776 +/- 0.011
Wine -0.93 +/- 0.01 1.00 +/- 0.001 -1.00 +/- 0.01 -0.976 +/- 0.016 -0.969 +/- 0.014
Yacht -1.55 +/- 0.03 -2.41 +/- 0.02 -1.70 +/- 0.03 -2.412 +/- 0.006 -2.316 +/- 0.006

Table 2: Comparison of Noisy Adam, Noisy K-FAC and Vadam with other popular methods. Table is prepared from the
experimental results of (Khan et al., 2018; Zhang et al., 2018)

advantage on Noisy K-FAC. It makes sense that noisy K-FAC performs better than Noisy Adam and
Vadam due to its more expressive covariance for the approximate posterior. Please see the Table 2 for
details on the experiment results.

5.2 Noisy Optimizers in Classification Tasks

The distributed version of momentum employed VOGN and Noisy K-FAC is experimented in classifi-
cation tasks by Osawa et al. (2019). For the experiments they use the CIFAR-10 and ImageNet datasets,
and famous neural network architectures such as LeNet, AlexNet and ResNet.

It is observed that based on NLL, ECE and AUROC metrics on 5 different dataset/architecture combi-
nations(15 in total), VOGN performs the best or tied best on 10 metrics, and is second-best on the other
5(see Table 3). Plots comparing the validation accuracy of the VOGN with MC-dropout and standard
Adam can be seen in Figure 7. VOGN also have a similar performance with these methods in terms of
validation accuracy. The only experimental setup that involves Noisy K-FAC is the ImageNet/ResNet-18
setup in which Noisy K-FAC has comparable performance with Adam, and MC-dropout.

Figure 7: Figure taken from Osawa et al. (2019)

6. Conclusion

The work done by (Zhang et al., 2018; Khan et al., 2018; Osawa et al., 2019) has shown that, noisy op-
timizers which employs natural gradient method are good and efficient ways of performing variational
inference in Bayesian deep learning.

In the experiments, it is observed that noisy optimizers employed by natural gradient method perform
similar and sometimes better than the other Bayesian methods such as MC-Dropout and black box vari-
ational inference. Except VOGN, they are easy to implement with current deep learning frameworks.
These noisy optimizers are also experimented and performed well in the active learning and reinforce-
ment learning tasks but they are not mentioned in this summary paper due to page limit.

15

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Dataset/
Architecture

Optimiser Train/Validation Accuracy (%) Validation NLL Epochs Time/epoch (s) ECE AUROC

CIFAR-10/
LeNet-5(no DA)

Adam 71.98 / 67.67 0.937 210 6.96 0.021 0.794
BBB 66.84 / 64.61 1.018 800 11.43 0.045 0.784
MC-dropout 68.41 / 67.65 0.99 210 6.95 0.087 0.797
VOGN 70.79 / 67.32 0.938 210 18.33 0.046 0.8

CIFAR-10/AlexNet(no DA)
Adam 100.0 / 67.94 2.83 161 3.12 0.262 0.793
MC-dropout 97.56 / 72.20 1.077 160 3.25 0.14 0.818
VOGN 79.07 / 69.03 0.93 160 9.98 0.024 0.796

CIFAR-10/
AlexNet

Adam 97.92 / 73.59 1.48 161 3.08 0.262 0.793
MC-dropout 80.65 / 77.04 0.667 160 3.2 0.114 0.828
VOGN 81.15 / 75.48 0.703 160 10.02 0.016 0.832

CIFAR-10/
ResNet-18

Adam 97.74 / 86.00 0.55 160 11.97 0.082 0.877
MC-dropout 88.23 / 82.85 0.51 161 12.51 0.166 0.768
VOGN 91.62 / 84.27 0.477 161 53.14 0.04 0.876

ImageNet/
ResNet-18

SGD 82.63 / 67.79 1.38 90 44.13 0.067 0.856
Adam 80.96 / 66.39 1.44 90 44.4 0.064 0.855
MC-dropout 72.96 / 65.64 1.43 90 45.86 0.012 0.856
OGN 85.33 / 65.76 1.6 90 63.13 0.128 0.854
VOGN 73.87 / 67.38 1.37 90 76.04 0.029 0.854
K-FAC 83.73 / 66.58 1.493 60 133.69 0.158 0.842
Noisy K-FAC 72.28 / 66.44 1.44 60 179.27 0.08 0.852

Table 3: Performance comparisons of VOGN and Noisy K-FAC on different dataset/architecture combinations. DA means
‘Data Augmentation’, NLL refers to ‘Negative Log Likelihood’ (lower is better) and ECE refers to ‘Expected Calibration
Error’. (lower is better), AUROC refers to ‘Area Under ROC curve’ (higher is better).

References

Shun-ichi Amari. Neural learning in structured parameter spaces - natural riemannian gradient. In
M. C. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Sys-
tems, volume 9, pages 127–133. MIT Press, 1997. URL https://proceedings.neurips.
cc/paper/1996/file/39e4973ba3321b80f37d9b55f63ed8b8-Paper.pdf.

Shun-ichi Amari. Information Geometry and Its Applications. Springer Publishing Company, Incorpo-
rated, 1st edition, 2016. ISBN 4431559779.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems, volume 24, pages 2348–2356. Curran Associates,
Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/
7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Srivastava.
Fast and scalable bayesian deep learning by weight-perturbation in adam, 2018.

Mikael Kuusela, T. Raiko, Antti Honkela, and J. Karhunen. A gradient-based algorithm competitive
with variational bayesian em for mixture of gaussians. 2009 International Joint Conference on Neural
Networks, pages 1688–1695, 2009.

Shaowei Lin. What is singular learning theory? URL https://shaoweilin.github.io/
montreal.pdf.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature, 2020.

Manfred Opper and Cédric Archambeau. The variational gaussian approximation revisited. Neural
Comput., 21(3):786–792, March 2009. ISSN 0899-7667.

16

https://proceedings.neurips.cc/paper/1996/file/39e4973ba3321b80f37d9b55f63ed8b8-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/39e4973ba3321b80f37d9b55f63ed8b8-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf
https://shaoweilin.github.io/montreal.pdf
https://shaoweilin.github.io/montreal.pdf

TU MUNICH - MASTER SEMINAR BEYOND DEEP LEARNING: SELECTED TOPICS ON NOVEL CHALLENGES

Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota,
and Mohammad Emtiyaz Khan. Practical deep learning with bayesian principles, 2019.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks, 2014.

Hugh Salimbeni, Stefanos Eleftheriadis, and James Hensman. Natural gradients in practice: Non-
conjugate variational inference in gaussian process models, 2018.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as vari-
ational inference, 2018.

17

	Introduction
	Background
	Bayesian Inference
	Kullback-Leibler Divergence
	Variational Inference
	Reparametrization Trick

	Natural Gradient
	Introduction
	Riemannian Metrics and Fisher Information Matrix
	Natural Gradient: Steepest Direction in the Riemannian Manifold

	Bayesian Inference with Noisy/Perturbed Natural Gradients
	Variational Inference using Noisy Natural Gradient
	Noisy Adam
	Kronecker-Factored Approximate Curvature
	Noisy K-FAC with matrix variate gaussian posterior

	Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
	Variational Online Gauss-Newton (VOGN)
	Variational RMSprop(Vprop)
	Variational Adam(Vadam)

	Comparison of Noisy/Perturbed Optimizers
	Evaluation
	Noisty Optimizers in Regression Tasks
	Noisy Optimizers in Classification Tasks

	Conclusion

