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Topic: Image Formation, Extended Kalman Filter 

Exercise 1.1: Image Formation 

In this exercise, you will implement a basic image projection using the pinhole camera model and 

image undistortion in Matlab. 

 

Figure 1: Checkerboard coordinate frame. 

a) Download the image data for this part of the exercise from the course webpage. The archive 

contains two images sample_undistorted.png and sample_distorted.png. 

Read the sample images (imread) and convert them to grayscale using rgb2gray. 

 

 

b) Start with the undistorted sample image and draw all the corner points on the checkerboard 

pattern by projecting their 3D coordinates into the image. For this, we define a coordinate 

frame on the checkerboard with the origin in the upper left inner corner of the pattern (see 

Fig. 1). 

The x-axis is parallel to the longer side of the pattern with increasing values towards the right 

in the sample image. 

The y-axis points downwards along the shorter side of the pattern in the image. The length 

between the corners on the checkerboard is 0.04 m. 

The transformation from checkerboard frame to camera frame is given by 

𝜔1 = −0.372483192214, 𝜔2 = 0.0397022486165, 𝜔3 = 0.0650393402332, 

𝑡1 = −0.107035863625, 𝑡2 = −0.147065242923, 𝑡3 = 0.398512498053, 

where (𝜔1, 𝜔2, 𝜔3) defines the rotation in the axis-angle representation and (𝑡1, 𝑡2, 𝑡3) the 

translation vector in meters. 

The camera intrinsics for the undistorted image are specified by the focal lengths 

𝑓𝑥 = 420.506712, 𝑓𝑦 = 420.610940 

and the principal point 

𝑐𝑥 = 355.2082980, 𝑐𝑦 = 250.3367870. 



For projecting the points on the checkerboard, first create the set of 3D points in the 

checkerboard frame. You can use the function meshgrid. Transform the points into the 

camera frame and project them to pixel coordinates on the image plane according to the 

pinhole camera model by using the given camera intrinsics. 

Overlay the projected points with the image. 

 

 

c) Now repeat the projection and visualization of the checkerboard corners from the previous 

step in the distorted image. To this end, you need to apply the following distortion model to 

the normalized image coordinates �̅� before mapping them to pixel coordinates using the 

camera matrix �̅�𝑝 = 𝑪�̅�𝑑: 

𝒚𝑑  =  (1 +  𝑘1𝑟2  + 𝑘2𝑟4)𝒚, 𝑟 ∶=  ‖𝒚‖2. 

The distortion parameters are 𝑘1 = −0.296609 and 𝑘2 = 0.080818. 

 

 

d) Determine the horizontal and vertical field of view of the camera, measured horizontally and 

vertically across the image center in the distorted and the undistorted case. 

 

Hint: Use the following iterative approach to determine undistorted from distorted image 

coordinates: 

 

function Undistort(𝒚𝑑) 

    𝑡 ← 0 

    𝑦𝑡 ← 𝒚𝑑 

    repeat 

        𝑟 = ‖𝑦𝑡‖2 

        𝑟𝑑 = (1 + 𝑘1𝑟2 + 𝑘2𝑟4) 

        𝒚𝑡+1 =
1

𝑟𝑑
𝒚𝑑 

        𝑡 ← 𝑡 + 1 

    until ‖𝒚𝑡  − 𝒚𝑡−1‖2 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

    return 𝒚𝑡 

end function 

 

 

Exercise 1.2: Extended Kalman Filter 

In this exercise, you will implement a robot localization algorithm based on the Extended Kalman 

Filter. We assume the robot moves in the 2D plane, for example, a wheeled robot with differential 

drive that moves on the floor inside a building. This means the robot state 𝒙𝑡 = (𝑥𝑡 , 𝑦𝑡 , 𝜃𝑡)𝑇 is 

3-dimensional and composed of the 2-dimensional position 𝑥𝑡, 𝑦𝑡 in the plane and the robot’s heading 

𝜃𝑡. We model the robot motion with an odometry-based motion model in this exercise, i.e. the state 

transition model is 

𝒙𝑡  =  𝑔(𝒙𝑡−1, 𝒖𝑡) + 𝝐𝑡 ∶= 𝒙𝑡−1 + (
𝑢𝑡𝑟 cos(𝜃𝑡−1 + 𝑢𝑟1)
𝑢𝑡𝑟 sin(𝜃𝑡−1 + 𝑢𝑟1)

𝑢𝑟1 + 𝑢𝑟2

) + 𝝐𝑡 , 𝝐𝑡 ∼ 𝒩(𝟎, 𝚺𝑑𝑡). 



The action 𝒖𝑡 = (𝑢𝑡𝑟, 𝑢𝑟1, 𝑢𝑟2) is given by translational 𝑢𝑡𝑟 and rotational (𝑢𝑟1, 𝑢𝑟2) motion 

measurements obtained from wheel odometry. For the noise covariance of the state-transitions, we 

assume 

𝚺𝑑𝑡 = (
0.1 0 0
0 0.1 0
0 0 0.01

). 

The robot measures the range 𝑟 and bearing 𝜙 to 2D landmark points 𝒍𝑗 = (𝑙𝑗,𝑥, 𝑙𝑗,𝑦) in the 

environment in the horizontal plane. It measures multiple landmarks in a time step for which we 

assume the association 𝑐𝑡,𝑖 = 𝑗 of measurements 𝒛𝑡,𝑖 = (𝑟𝑡,𝑖 , 𝜙𝑡,𝑖)
𝑇
 to landmarks 𝑗 known. The 

observation model is 

𝒛𝑡,𝑖  =  ℎ(𝒙𝑡 , 𝑐𝑡,𝑖) + 𝜹𝑡,𝑖: = (
‖(𝑥𝑡, 𝑦𝑡)𝑇 − (𝑙𝑗,𝑥 , 𝑙𝑗,𝑦)

𝑇
‖

2

atan2(𝑙𝑗,𝑦  − 𝑦𝑡 , 𝑙𝑗,𝑥 − 𝑥𝑡) − 𝜃𝑡

) + 𝜹𝑡,𝑖 𝜹𝑡,𝑖 = 𝒩(𝟎, 𝚺𝑚𝑡,𝑖). 

For the observation noise of an individual landmark measurement, we assume 

𝚺𝑚𝑡,𝑖 = (
0.1 0
0 0.1

). 

The complete observation model in each time step, 𝒛𝑡 = ℎ(𝒙𝑡  ) + 𝜹𝑡 with 𝜹𝑡 = 𝒩(𝟎, 𝚺𝑚𝑡) stacks the 

𝑀 measurements in a single vector 𝒛𝑡 = (𝒛𝑡,0
𝑇 , . . . , 𝒛𝑡,𝑀−1

𝑇 )
𝑇

∈ ℝ2𝑀. Analogously, we write 

ℎ(𝒙𝑡) ∶= (ℎ(𝒙𝑡 , 𝑐𝑡,0)
𝑇

, . . . , ℎ(𝒙𝑡 , 𝑐𝑡,𝑀−1)
𝑇

)
𝑇
. The covariance 𝚺𝑚𝑡 is formed from the individual 

measurement covariances, 

𝚺𝑚𝑡 = (

𝚺𝑚𝑡,0 𝟎 … 𝟎

𝟎 𝚺𝑚𝑡,1 ⋱ ⋮

⋮ ⋱ ⋱ 𝟎
𝟎 … 𝟎 𝚺𝑚𝑡,𝑀−1

). 

a) Determine the analytic Jacobians of the state-transition function 𝑔(𝒙, 𝒖𝑡) and the observation 

function ℎ(𝒙) for the robot pose 𝒙. 

 

 

b) Obtain the code sample and data for this part of the exercise from the course webpage. The 

archive contains three folders: data, matlab, plots. Implement EKF prediction and correction to 

localize the robot by finalizing the code in files prediction_step.m and 

correction_step.m. 

 

 

c) Run your code and report the final robot pose estimate after processing the whole dataset. 

Visualize your final result using the provided plotting functions. 


