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Exercise Sheet 3 

Topic: Keypoint Detection and Matching, Direct Visual Odometry 

Exercise 3.1: Keypoint Detection and Matching for Motion Estimation 

In this exercise, you will implement and analyze keypoint detection and matching algorithms to 

determine point correspondences for indirect motion estimation between pairs of images. 

a) Extract the image files 0005.png and 0007.png from folder data/fountain in the 

exercise archive. The intrinsic camera calibration parameters for both images are provided in 

the file camera_calibration.txt as the camera intrinsics matrix, 

 

𝐂 = (
2759.48 0 1520.69

0 2764.16 1006.81
0 0 1

) 

 

 

b) Find corresponding point pairs using keypoint detection, description and matching. Detect 

FAST and SURF keypoints using the functions detectFASTFeatures and 

detectSURFFeatures functions in Matlab. 

Set MinContrast = 0.08 for FAST and use default settings for SURF. Compute BRISK and 

SURF descriptors for the detected keypoints using the extractFeatures function and 

match the keypoints once using only SSD/Hamming distance and once using the Lowe’s 

distance ratio with a threshold of 0.6. 

Hint: Make use of the parameter MaxRatio of the function matchFeature. 

For computing descriptors at SURF keypoints, you should take the scale and rotation of the 

keypoints into account using the standard settings of SURF features. For FAST you should 

use the scale of the detector as descriptor scale (also standard setting). Visualize your 

matching results for the detector-descriptor combinations FAST-BRISK, FAST-SURF, 

SURF-BRISK, SURF-SURF. 

 

 

c) Implement RANSAC to find the 2D-to-2D motion estimate using the eight point algorithm 

from the lecture for a success probability of 0.99, an outlier ratio of 0.2 and SURF detector 

and descriptor. What is the number of required iterations N for RANSAC with this setting? 

Determine inliers using a threshold of 10 pixels on the reprojection error. What is the number 

of inliers and the average reprojection error of the final inlier set? Compare your results for 

different detector-descriptor combinations (FAST-BRISK, FAST-SURF, SURF-BRISK, 

SURF-SURF), outlier ratios (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.9), and reprojection error 

thresholds (1, 2, 5, 10, 20, 50 pixels). 

Hint: Implementations of the eight point algorithm and for 3D point reconstruction are 

provided. 

 

  



Exercise 3.2: Direct Image Alignment 

In this exercise, you will implement direct image alignment of RGB-D images to estimate the camera 

motion between two images. 

a) Extract the exercise archive to obtain the provided data files. The archive contains RGB and 

depth images in the data folders rgbd/rgb and rgbd/depth. The file names of the images 

specify the recording timestamps in seconds. In the following, associate the RGB with depth 

images by the closest timestamp. The file formats are described here: 

https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats 

 

The RGB image timestamps of each subsequent pair are 

 

P1 = (1305031102.175304;  1305031102.275326) 

P2 = (1341847980.722988;  1341847982.998783) 

 

The corresponding camera intrinsics matrices 𝐂1 and 𝐂2 of the RGB image pairs are: 

 

𝐂1 = (
517.3 0 318.6

0 516.5 255.3
0 0 1

) , 𝐂2 = (
535.4 0 320.1

0 539.2 247.6
0 0 1

) 

 

Note: Convert the RGB images to floating point grayscale images before processing them. 

The depth images represent depth values by 16-bit integer values and need to be scaled by a 

factor of 1=5000 to obtain metric depth. 

Convert the depth images to floating point metric values before further processing them. Use 

the provided downscale function to downsample the images 4 times with sampling factor 2. 

Display the images in original resolution and their downsampled versions. 

 

 

b) Implement the se3Exp and se3Log functions in the respective scripts. 

Hint: Matlab provides an implementation of the matrix exponential and logarithm. 

 

 

c) Implement the calcResidual function in the respective script such that it determines the 

photometric residual between the two images on the original resolution. The function should 

return the residuals in a vector. Display the residual image. 

 

 

d) Use the calcResidual function to implement numeric differentiation of the direct image 

alignment residuals for a left-multiplied pose increment. Use twist coordinates to represent the 

pose and apply small pose increments (10
−6

) on each twist coordinate individually to 

determine the numeric derivatives. Implement the function in the 

deriveResidualsNumeric.m script. 

 

 

e) Implement the Gauss-Newton step in the doAlignment.m script and a suitable stopping 

criterion for the Gauss-Newton iterations. Finalize the script to determine the relative camera 

https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats


motion for the two image pairs P1 and P2 through direct image alignment using the numeric 

derivative of the residuals. 

 

For pair P1, the resulting pose should be close to 

 

𝝃1 = (−0.0018, 0.0065, 0.0369, −0.0287, −0.0184, −0.0004) 

 

For pair P2 it should be close to 

 

𝝃2 = (0.2979, −0.0106, 0.0452, −0.0041, −0.0993, −0.0421) 

 

Compare your results with the ground truth. 

 

 

f) Implement the analytic derivative of the residuals for the left-multiplied pose increment (in 

script deriveResidualsAnalytic.m). Use twist coordinates again to represent the 

pose. Run Gauss-Newton iterations with analytic derivatives using the doAlignment.m 

script. What are your observations w.r.t. accuracy and run-time in comparison to numeric 

differentiation? 

 

 

g) Use iteratively reweighted least squares to implement the Huber norm 

 

‖𝑟‖𝛿 = {
0.5𝑟2 for |𝑟| ≤ 𝛿

𝛿(|𝑟| − 0.5𝛿) otherwise
 

 

on the residuals. First derive the weights for the Huber norm in each iteration. Test the 

weighting on the defective RGB-D image pair in the data archive and compare the result with 

the unweighted Gauss-Newton method when using analytic derivatives. 


