Exercise Sheet 4

Topic: EKF-SLAM

Exercise 4.1: EKF-SLAM

In this exercise, you will implement an EKF-SLAM algorithm. We assume the robot moves in the 2D plane, for example, a wheeled robot with differential drive that moves on the floor inside a building. This means the robot state $\xi_{t}=\left(x_{t}, y_{t}, \theta_{t}\right)^{T}$ is 3-dimensional and composed of the 2-dimensional position x_{t}, y_{t} in the plane and the robot heading θ_{t}. We model the robot motion with an odometrybased motion model in this exercise, i.e. the state-transition model is

$$
\boldsymbol{\xi}_{t}=g\left(\xi_{t-1}, \boldsymbol{u}_{t}\right)+\boldsymbol{\epsilon}_{t}:=\boldsymbol{\xi}_{t-1}+\left(\begin{array}{c}
u_{t r} \cos \left(\theta_{t-1}+u_{r 1}\right) \\
u_{t r} \sin \left(\theta_{t-1}+u_{r 1}\right) \\
u_{r 1}+u_{r 2}
\end{array}\right)+\boldsymbol{\epsilon}_{t}, \quad \boldsymbol{\epsilon}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{d t}\right)
$$

The action $\mathbf{u}_{t}=\left(u_{t r}, u_{r 1}, u_{r 2}\right)^{T}$ is given by translational $\left(u_{t r}\right)$ and rotational $\left(u_{r 1}, u_{r 2}\right)$ motion measurements obtained from wheel odometry. For the noise covariance of the state-transitions, we assume

$$
\boldsymbol{\Sigma}_{d t}=\left(\begin{array}{ccc}
0.1 & 0 & 0 \\
0 & 0.1 & 0 \\
0 & 0 & 0.01
\end{array}\right)
$$

The robot measures the range r and bearing ϕ to 2 D landmark points $\mathbf{l}_{j}=\left(l_{j, x}, l_{j, y}\right)^{T}$ in the environment in the horizontal plane. The full state vector \mathbf{x} of the EKF is the vector stacked from robot state ξ_{t} and all landmark points \mathbf{l}_{j}. The robot measures multiple landmarks in a time step for which we assume the association $c_{t, i}=j$ of measurements $\mathbf{z}_{t, i}=\left(r_{t, i}, \phi_{t, i}\right)^{T}$ to landmarks j known. The observation model is

$$
\mathbf{z}_{t, i}=h\left(\mathbf{x}_{t}, c_{t, i}\right)+\boldsymbol{\delta}_{t, i}:=\binom{\left\|\left(x_{t}, y_{t}\right)^{T}-\left(l_{j, x}, l_{j, y}\right)^{T}\right\|_{2}}{\operatorname{atan2}\left(l_{j, y}-y_{t}, l_{j, x}-x_{t}\right)-\theta_{t}}+\boldsymbol{\delta}_{t, i} \quad \quad \boldsymbol{\delta}_{t, i} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{m t, i}\right)
$$

For the observation noise of an individual landmark measurement, we assume

$$
\boldsymbol{\Sigma}_{m t, i}=\left(\begin{array}{cc}
0.1 & 0 \\
0 & 0.1
\end{array}\right)
$$

The complete observation model in each time step, $\mathbf{z}_{t}=h\left(\mathbf{x}_{t}\right)+\boldsymbol{\delta}_{t}$ with $\boldsymbol{\delta}_{t} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{m t}\right)$ stacks the M measurements in a single vector $\mathbf{z}_{t}=\left(\mathbf{z}_{t, 0}^{T}, \cdots, \mathbf{z}_{t, M-1}^{T}\right)^{T}$. Analogously, we write $h\left(\mathbf{x}_{t}\right):=\left(h\left(\mathbf{x}_{t}, x_{t, 0}\right)^{T}, \cdots, h\left(\mathbf{x}_{t}, x_{t, M-1}\right)^{T}\right)^{T}$. The covariance $\boldsymbol{\Sigma}_{m t}$ is formed from the individual measurement covariances,

$$
\boldsymbol{\Sigma}_{m t}=\left(\begin{array}{cccc}
\boldsymbol{\Sigma}_{m t, 0} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{m t, 1} & \cdots & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \boldsymbol{\Sigma}_{m t, M-1}
\end{array}\right)
$$

a) Determine the analytic Jacobians of the state-transition function $g\left(\mathbf{x}_{t-1}, \mathbf{u}_{t}\right)$ and the observation function $h\left(\mathbf{x}_{t}\right)$ for the robot pose ξ and landmark positions \mathbf{l}_{j}.
b) Obtain the code sample and data for this part of the exercise from the course webpage. The archive contains three folders: data, matlab, plots. Implement EKF prediction and correction to localize the robot and map the landmarks by finalizing the code in the files prediction_step.mand correction_step.m.
c) Run your code and visualize the robot pose and landmark position estimates using the provided plotting functions.

