
Robotic 3D Vision Computer Vision Group

Winter Semester 2020/2021 TUM Department of Informatics

Exercise Sheet 6

Topic: Iterative Closes Point, Dense Stereo Reconstruction

Exercise 6.1: Iterative Closest Point Algorithm

In this exercise, you will implement the iterative closest point algorithm to align point clouds and to

estimate the camera motion between the RGBD images.

a) Extract the exercise archive to obtain the provided data files. The archive contains RGB and

depth images in the data folders tum_rgbd/rgb and tum_rgbd/depth. The file names

of the images specify the recording timestamps in seconds. In the following, associate the

RGB with depth images by the closest timestamp. The file formats are described here:

https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats

The RGB image timestamps of each subsequent pair are:

𝑃1 = (1305031102.175304; 1305031102.275326)

𝑃2 = (1341847980.722988; 1341847982.998783)

The corresponding camera matrices 𝑪1 and 𝑪2 of the respective RGB image pairs are:

𝑪1 = (
517.3 0 318.6

0 516.5 255.3
0 0 1

) 𝑪2 = (
535.4 0 320.1

0 539.2 247.6
0 0 1

)

Note: Convert the RGB images to floating point grayscale images before processing them.

The depth images represent depth values by 16-bit integer values and need to be scaled by a

factor of 1/5000 to obtain metric depth. Convert the depth images to floating point metric

values before further processing them.

b) Use the provided downscale function to downsample the images to 80 × 60 pixels

resolution. Convert the images to 3D point clouds.

c) Implement the ICP algorithm by alternating the following two steps:

1) Establish point correspondences by finding the nearest neighbor for each point in one

image within the other image based on the Euclidean distance.

Hint: For fast nearest neighbor search you can use KDTreeSearcher.

2) Find the transformation between the point sets using Arun's method (see lecture).

d) Iterate the ICP steps until convergence, i.e. the relative error falls below a threshold or a

maximum number of iterations is reached. Report your results for the 2 image pairs and

compare with the results from Ex 3.2.

https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats

Exercise 6.2: Dense Stereo Reconstruction

In this exercise, you will implement a basic approach for dense stereo reconstruction.

a) Inspect the code and data provided for this exercise in the materials archive. The data are left

and right rectified stereo images from the KITTI dataset, contained in the folders

kitti/eft and kitti/right. The image file names give the number of the images in

the sequence. Corresponding left and right images have the same number. The camera

intrinsics are specified in the file K.txt.

The provided code contains a file main.m which implements basic loading of images and

camera intrinsics. It also sets up some parameters for the stereo reconstruction. It calls the

functions calcDisparity and disparity2PointCloud to determine the disparity

between images and visualize a 3D point cloud. Function prototypes for these functions are

included in the files calcDisparity.m and disparity2PointCloud.m.

b) Implement the function calcDisparity to find the disparity for each pixel in the left

image that minimizes the SAD or SSD patch comparison measures (see lecture). Visualize

your disparity estimation result for one stereo image pair in the sequence as a color map.

Hint: use the pdist2 function. The KITTI images are already stereo rectified such that

epipolar lines are horizontal on the same rows between the left and right images.

c) Filter outliers by rejecting ambiguous matches. To this end, reset all disparities to zero where

there are at least two second best disparity candidates with a matching cost ratio smaller than

1.5. Also reset disparities to zero if the corresponding pixel is found at the border of the right

image. Why?

d) Implement the disparity2PointCloud function. For this, you will need the camera

intrinsics and the baseline (the latter is defined in main.m). Visualize your result for one

stereo image pair in the sequence.

