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What We Will Cover Today 
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• Direct Sparse Odometry 

 

• Summary on Visual Odometry and SLAM 
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Recap: Direct SLAM with RGB-D Cameras 



Recap: Algorithm Overview 
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RGB-D Image 
@30Hz 

Track on current 
KF 

Take new 
KF? 

Optimize pose 
graph 

Add new KF to 
map/pose graph 

Update current 
with new KF 

yes no 



Recap: Large-Scale Direct Monocular 
SLAM 
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Recap: Algorithm Overview 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 6 



Direct Sparse Odometry 
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https://www.youtube.com/watch?v=C6-xwSOOdqQ Engel et al. T-PAMI 2018 

https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ
https://www.youtube.com/watch?v=C6-xwSOOdqQ


 

• The objects in the scene radiate light which is focused by 
the lens onto the image sensor 

 

• The pixels of the sensor observe an irradiance              
for an exposure time  

 

• The camera electronics translates the  
accumulated irradiance into intensity  
values according to a non-linear camera  
response function   

 

• The measured intensity is 

 

 
 

 

 

 

 

 

Recap: Camera Response Function 
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example inv. 



• Lenses gradually focus more light at 
the center of the image than at the 
image borders 

• The image appears darker towards 
the borders  

• Also called “lens attenuation” 

• Lense vignetting can be modelled as 
a map 

 

• Intensity measurement model  

 

 

 

 

 
 

 

 

 

 

 

Recap: Vignetting 
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corrected 

uncorrected 



Recap: Brightness Constancy Assumption Revisited 
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• Camera images include vignetting effects and non-linear camera 
response function  

 

• Idea: invert vignetting and camera response function using a 
known calibration 

 

• Perform direct image alignment on irradiance images: 

 

 

 

 

 

 

 

 



Recap: Brightness Constancy Assumption Revisited 
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• Automatic exposure adjustment needed in realistic environments 

• Add affine exposure parameters explicitly to objective function:  

 

 

 

 

 

 



Online Photometric Calibration 
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https://www.youtube.com/watch?v=nQHMG0c6Iew&feature=emb_logo Bergmann et al., ICRA 2018 

https://www.youtube.com/watch?v=nQHMG0c6Iew&feature=emb_logo
https://www.youtube.com/watch?v=nQHMG0c6Iew&feature=emb_logo


Tracking on Keyframe 
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• Direct image alignment of current 
frame to most recent keyframe 

 

 

 

• Photometric residuals with affine paramters 

 

 

• Optimized parameters       now include affine parameters 
𝑎1, 𝑎2, 𝑏1, 𝑏2 

• Can be set contatly to 0 if proper photometric calibration is available 

• Exposure times 𝑡1 and 𝑡2 are set to 1 if not available 

 

 

 

 

 

 

 

 

 

 

 

 



Tracking on Keyframe 
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• Residual distribution 

 

 

 

• Huber loss on residuals 

• Additional gradient  
dependent weight 

 

 

 

• Solved using iteratively  
reweighted least squares 

 

 

 

 

 

 

 

 

 

 

 

 

 

Huber-loss for      = 1 

- Normal distribution 
- Laplace distribution 
- Student-t distribution 
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Windowed Optimization 
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• Optimize in a recent 
window for  

• keyframe poses and 
photometric 
calibration 

• inverse depth of 
sparse set of active 
points  

 

• Pose in SE(3) 

 

• Marginalization of 
old variables 

 

 

 

 

 

 

 

 

 

 

 

 



Depth Estimation 
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• Optimize inverse depth of a set of          points in all keyframes 
in bundle adjustment window 

 

• Initialization of inverse depth of new points by fusion of short-
baseline stereo comparisons from subsequent frames (similar 
to LSD-SLAM) 

 

 

 

 

 

 

 

 

 

 

 

 



Depth Estimation 
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• Candidate point selection 

• Region-adaptive gradient threshold 

 

 

 

 

 

 

 

 

 

 

 



Keyframe Selection 
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• Several criteria to decide when to create new keyframe 

• Mean square optical flow of points in latest keyframe towards 
current frame during tracking 

 

 

 

• Relative brightness factor between keyframe and current frame 

 

 

• Threshold linear combination of criteria 

• Keyframes are generated with relatively high frequency 

 

 

 

 

 

 

 

 

 

 

 



Keyframe Selection 
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• DSO neglects spatial correlations of depth estimates in image 

• Hessian block on depths is diagonal 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

Structure of the Hessian 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 20 



Marginalization 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 21 

• Goal of marginalization is  

• to keep information of old poses and depths as prior without 
relinearizing and updating old variables 

 

• Marginalization of a keyframe proceeds by 

• First marginalize all points hosted in the keyframe before the 
keyframe pose 

• Marginalize points without observations in last two keyframes 

• Drop observations of points from other keyframes in the 
marginalized keyframe to keep sparsity of Hessian 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Recap: Gauss-Newton Method 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 22 

• Approximate Newton’s method to minimize E(x) 
• Approximate E(x) through linearization of residuals 

 
 
 
 
 
 
 

 
• Find root of                                                          using Newton’s method, i.e. 

 
 

• Pros: 
• Faster convergence (approx. quadratic convergence rate) 

• Cons: 
• Divergence if too far from local optimum (H not positive definite) 
• Solution quality depends on initial guess 

 
 



Marginalization 
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• More formally, consider GN method for error function E(x) 

 

 

• Split into variables        to keep and        to marginalize 

 

 

 

• Applying the Schur complement yields 

 

 

• Adds additional prior to GN optimization 

• Sparsity of point Hessian is not affected by marginalization 
• Since corresponding aberservations are dropped 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 



Marginalization 
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• Several criteria to decide when to marginalize a keyframe 

• Always keep the latest two keyframes 

• Keyframes with less than 5% visible points are marginalized 

• If more than N_f keyframes, marginalize keyframe which 
maximizes 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Stereo Direct Sparse Odometry 
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Wang et al. ICCV 2017 

https://www.youtube.com/watch?v=A53vJO8eygw 

https://www.youtube.com/watch?v=A53vJO8eygw
https://www.youtube.com/watch?v=A53vJO8eygw


Algorithm Overview 
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Deep Direct Sparse Odometry (Mono) 
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Yang et al. ECCV 2018 

https://www.youtube.com/watch?v=sLZOeC9z_tw&t=7s 

https://www.youtube.com/watch?v=sLZOeC9z_tw&t=7s
https://www.youtube.com/watch?v=sLZOeC9z_tw&t=7s


 

 

Comparison 
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DVO-SLAM LSD-SLAM DSO 

+ RGB-D cameras + monocular cameras 
+ stereo cameras 

+ monocular cameras 
+ stereo cameras 

+ global consistency + global consistency - no global consistency1  

camera pose tracking 
towards keyframe 

camera pose tracking 
towards keyframe 

camera pose tracking 
towards keyframe 

+ depth from sensor + depth from stereo 
comparisons & filtering 

++ depth optimization 
using photometric 
residuals in local 
keyframe window 

tracking-only & 
pose graph optimization 

tracking-and-mapping & 
pose graph optimization 

tracking-and-mapping & 
direct sparse bundle 
adjustment in local 
keyframe window with 
marginalization 

+ local accuracy + local accuracy ++ local accuracy 

1can be extended with PGO back-end (e.g. LDSO) 



 

 

VO / VSLAM Summary 
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• Lecture blocks so far 

• Image formation and multiple view geometry 

• Probabilistic state estimation 

• Visual and visual-inertial odometry 

• Visual SLAM 

 

• Outlook 

• 3D object detection and tracking 

• Dense reconstruction and map representations 

 
 

 

 

 

 

 



 

 

Probabilistic State Estimation 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 30 

• Probabilistic formulation of visual odometry and SLAM 
algorithms as inference in hidden Markov models 

 

 

 

 

 

 

• Observation model 

 

• State-transition model 
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Probabilistic State Estimation 
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• Filtering: recursive estimation of most recent state (f.e. most 
recent camera pose) 

• Recursive Bayesian filter 

• (Extended) Kalman filter 

• Particle filter 
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Probabilistic State Estimation 
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• Full state posterior estimation 

• Gaussian noise models, non-linear models leads to non-linear 
least squares 

• Gauss-Newton method, typically offline 

• Other noise models: Iteratively reweighted least squares 
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Probabilistic State Estimation 
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• Fixed-lag smoothing: 

• Inference of a window of recent states 

• Marginalization of remaining states 

• Trade-off between recursive filtering (faster) and full state 
posterior estimation (more accurate) 

• Marginalization does not have to be in temporally consistent 
order 

• See DSO 

• Strictly speaking no 
fixed-lag 

 

 

 

 

 

 

Image source: Leutenegger et al., IJRR 2015 



State Estimation Approaches 

34 

Filtering Fixed-Lag Smoothing Maximum-A-Posteriori 
(MAP) Estimation 

Recursive Bayesian 
filtering of the most 
recent state (e.g. Kalman 
Filter) 

Optimize window of 
states through non-linear 
optimization and 
marginalization of old 
states 

Full posterior 
optimization of all states 
through non-linear least 
squares 

- Single linearization + Relinearize (in window) + Relinearize 

- Accumulation of 
linearization errors 

- Accumulation of 
linearization errors 

+ Sparse Matrices 

- Gaussian approximation 
of marginalized states 

- Gaussian approximation 
of marginalized states 

+ No Gaussian 
approximation of states 

+ Very Fast + Fast + Slow 
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Visual Odometry vs. SLAM 
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Visual Odometry Visual SLAM 

Estimate motion of object from 
measurements of visual sensor on 
the object 

Estimation motion of object and 
map of environment from 
measurements of visual sensor on 
the object 

Real-time tracking Real-time tracking, lower frame-rate 
loop closing and global optimization 

Local consistency, drift Local and/or global consistency  

Map/3D reconstruction as a side-
product 

Concurrent accurate map 
estimation/3D reconstruction 



Indirect vs. Direct Methods 
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Indirect Direct 

Input images Input images 

Track: min. reprojection 
error (point distances) 

Map: estimate keypoint 
parameters (f.e. 3D 
coordinates) 

Track: min. photometric/ 
geometric error pixel-wise 

Map: estimate per-pixel 
depth from 
photoconsistency 

Extract and match 
keypoints (SIFT,BRIEF,…) 



• 2D-to-2D 
• Reproj. error: 

 
 
  

• Linear algorithm: 8-point 

 
• 2D-to-3D 

• Reprojection error: 
 

• Linear algorithm: DLT PnP 
 

• 3D-to-3D 
• Reprojection error: 

 
• Linear algorithm: Arun‘s method 

Motion Estimation from Point Correspondences 
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Motion Estimation for Camera Type 

Robotic 3D Vision 

Correspondences Monocular Stereo RGB-D 

2D-to-2D X X X 

2D-to-3D X X X 

3D-to-3D X X 
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Keypoint Detection 
• Desirable properties of keypoint detectors for visual odometry: 

• high repeatability,  

• localization accuracy,  

• robustness,  

• invariance,  

• computational efficiency 

  

 

Robotic 3D Vision 

Image source: Svetlana Lazebnik 

Harris Corners DoG (SIFT) Blobs 
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Keypoint Matching 

• Desirable properties for VO: 

• High recall 

• Precision 

• Robustness  

• Computational efficiency 

• One possible approach to keypoint matching: by descriptor 

• Robustness: RANSAC 
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Direct Visual Odometry Pipeline 

• Avoid manually designed  
keypoint detection 
and matching 
 

• Instead: direct image  
alignment 
 

𝐸(𝝃) =  𝐼1 𝐲 − 𝐼2 𝜔 𝐲, 𝝃 𝑑𝐲
𝐲∈Ω

 

 

𝐸(𝝃) = 𝐼1 𝐲𝑖 − 𝐼2 𝜔 𝐲𝑖 , 𝝃

𝑖

 

 
 
• Warping requires depth 

• RGB-D 
• Fixed-baseline stereo 
• Temporal stereo, tracking  

and (local) mapping 
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• Measurements are affected by noise 

  

 

• A convenient assumption is Gaussian noise 

 

 

• If we further assume that noise of pixel intensities is stochastically independent 
accross the image, we can formulate the a-posteriori probability 

 

 

 

 

 

 

 

 

Probabilistic Direct Image Alignment 
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• Optimize negative log-likelihood  

 Product of exponentials becomes a summation over quadratic terms 

 Normalizers are independent of the pose 
 
 
          , stacked residuals: 

 

 

 

• Non-linear least squares problem can be efficiently optimized using standard 
second-order tools (Gauss-Newton, Levenberg-Marquardt) 

 

 

 

Optimization Approach 
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Direct Visual Odometry 
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Direct RGB-D Odometry Direct Monocular Odometry 

Dense depth from sensor Semi-dense depth estimated 
concurrently from short-baseline 
stereo comparisons and filtering 

Only tracking of camera pose Alternating, interdependent camera 
pose and depth map estimation 

Tracking on keyframe Tracking/depth estimation on 
keyframe 

Metric scale from measured depth No metric scale 



 

 

Monocular Direct Visual Odometry 

Robotic 3D Vision 

• Estimate motion and depth concurrently 

 

 

 

 

 

 

 

 

• Alternating optimization: Tracking and Mapping 

Images from: Engel et al., ICCV 2013 
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Semi-Dense Mapping 

Robotic 3D Vision 

• Estimate inverse depth and variance at high gradient pixels 

• Correspondence search along epipolar line (5-pixel intensity SSD) 

 

 

 

 

 

 

• Kalman-filtering of depth map: 

• Propagate depth map & variance from previous frame 

• Update depth map & variance with new depth observations 
Images from: Engel et al., ICCV 2013 
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Visual-Inertial Fusion 
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• Vision and IMU are complementary! 

 

 

 

 

 

 

 

 

• Odometry using both sensor types is still prone to drift! 

 

 

 

 
 

 

 

 

 

Visual sensing Inertial sensing 

+ Accurate at small to medium motion - Large relative uncertainty for low 
acceleration/angular velocity 

+ Rich information for other purposes 

- Limited output rate (~100Hz) + High output rate (~1000Hz) 

- Scale ambiguity for monocular camera + Scale directly observable 

- Lack of robustness for rapid motion, 
textureless areas, low illumination 

+ Independent of environmental 
conditions 



Camera-IMU System 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 48 

• Extrinsic calibration between camera(s) and IMU frame 

 

 

 

 

 

 

• Time synchronization 

 
 

 

 

 

 

W B (IMU) 

C1 (camera) 

C0  
(camera) 

Skybotix VI-Sensor 



Tightly-Coupled Filter for Visual-Inertial Fusion 
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• Photoconsistency measurements of landmark patch projections 
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https://www.youtube.com/watch?v=ZMAISVy-6ao 
 

(Bloesh, Omari, Hutter, Siegwart, IROS 2015) 

https://www.youtube.com/watch?v=ZMAISVy-6ao
https://www.youtube.com/watch?v=ZMAISVy-6ao
https://www.youtube.com/watch?v=ZMAISVy-6ao
https://www.youtube.com/watch?v=ZMAISVy-6ao


Indirect Fixed-Lag Smoothing Example 

50 

• OKVIS: Keyframe-based indirect fixed-lag smoothing VIO 
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https://www.youtube.com/watch?v=TbKEPA2_-m4 

(Leutenegger, Lynen, Bosse, Siegwart, Furgale, IJRR 2015) 

https://www.youtube.com/watch?v=TbKEPA2_-m4
https://www.youtube.com/watch?v=TbKEPA2_-m4
https://www.youtube.com/watch?v=TbKEPA2_-m4


Fixed Size Optimization Window Example 

51 

• Direct Fixed Size Optimization Window VIO 
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https://www.youtube.com/watch?v=GoqnXDS7jbA 

(von Stumberg, Usenko, Cremers, ICRA 2018) 

https://www.youtube.com/watch?v=GoqnXDS7jbA
https://www.youtube.com/watch?v=GoqnXDS7jbA


What is Visual SLAM? 

52 

• Visual simultaneous localization and mapping (VSLAM)… 

• Tracks the pose of the camera in a map, and simultaneously 

• Estimates the parameters of the environment map (f.e. reconstruct 
the 3D positions of interest points in a common coordinate frame) 

• Loop-closure: Revisiting a place allows for drift compensation 

• How to detect a loop closure 
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Image credit: Clemente et al., RSS 2007 



Why is SLAM difficult? 

• Chicken-or-egg problem 
• Camera trajectory and map are 

unknown and need to be 
estimated from observations 

 

• Accurate localization 
requires an accurate map 

 

• Accurate mapping requires 
accurate localization 

 

• How can we solve this problem 
efficiently and robustly? 

 
 

 
 

 

camera 
trajectory 

map 
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Why is SLAM difficult? 

Robotic 3D Vision 

• Correspondences 
between observations and 
the map are unknown 

 

• Wrong correspondences 
can lead to divergence of 
trajectory/map estimates 

 

• Important to model 
uncertainties of 
observations and 
estimates in a probabilistic 
formulation of the SLAM 
problem 

pose  
uncertainty 

observation 

correspondence 

map 
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Example Hessian of a BA Problem 

Robotic 3D Vision 

Image source: Manolis Lourakis (CC BY 3.0) 

Landmark 
dimensions 

Pose dimensions 

(10 poses) 

(982 landmarks) 
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Exploiting the Sparse Structure 

• Idea: 
Apply the Schur complement to solve the system in a partitioned way 

 

 

 

 

 

 

 

 

 

 

• Is this any better? 
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Exploiting the Sparse Structure 

• What is the structure of the two sub-problems ? 
 

• Poses: 

 

 

 

 

 

 

 

 

 

 

 

 

Robotic 3D Vision 

Poses that observe landmark j 
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Exploiting the Sparse Structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robotic 3D Vision 

Image source: Manolis Lourakis (CC BY 3.0) 
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Effect of Loop-Closures on the Hessian 

Robotic 3D Vision 

Band matrix 
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Effect of Loop-Closures on the Hessian 

Robotic 3D Vision 

Not band matrix: costlier to solve 
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Loop Closing by Place Recognition 

Robotic 3D Vision 

• Idea: use image retrieval techniques 

 

• Popular approach for place recognition is to use bag-of-visual-
words based image retrieval in conjunction with geometric 
verification (f.e. 8-point with RANSAC) 

 

 

 
 

 

 

 

Images: Cummins and Newman, Highly Scalable Appearance-Only SLAM – FAB-MAP 2.0, RSS 2009 
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Bag of Visual Words 
1. Extract local features 

2. Learn “visual vocabulary” 

3. Quantize local features using visual vocabulary  

4. Represent images by frequencies of “visual words”  

 

Slide credit: Svetlana Lazebnik 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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