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What We Will Cover Today 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 2 

• Introduction to 3D object detection 

 

• Challenges in object detection 

 

• Object detection and pose estimation with local image features 

• Affine transformation 

• Homography 

 

• Correspondence grouping and robust alignment 

• Generalized Hough transform 

 

 

 

 

 
 

 

 

 

 



Object Detection 
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• Today research on object detection gets more and more 
dominated by deep learning (DL) based approaches 

• R-CNN (and its extensions), YOLO, etc. 

 

• Though, especially in robotics applications runtime and 
computational complexity matters 

 

• Hence, we will manly focused on classical object detection and 
alignment strategies 

• Modern approaches often also combine DL and classical alignment 
approaches 



Object Detection 
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Slide adapted from S. Savarese 

Detection: Does this image contain a car? Where is it? 



Object Detection 
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Slide adapted from S. Savarese 

Detection: Which objects does this image contain? Where are they? 



Object Detection 
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Slide adapted from S. Savarese 

Detection: Accurate localization (instance segmentation) 



Object Detection 
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Slide adapted from S. Savarese 

Detection: Where are the objects in 3D? (Position and Orientation) 



Joint Detection and Reconstruction 
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Slide adapted from S. Savarese 



3D Object Detection 
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Image from pointclouds.org 

Detection: Where are the objects in 3D? 



3D Object Detection for Robotic Grasping 
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Papazov et al., IJRR 2012 https://www.youtube.com/watch?v=qlt1os_WJRs 

https://www.youtube.com/watch?v=qlt1os_WJRs
https://www.youtube.com/watch?v=qlt1os_WJRs


3D Object Detection for Autonomous Driving 
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Wang et al. DirectShape, ICRA 2020 



Challenges in Object Detection 
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Slide adapted from F. Li, A. Torralba 

View-point variation 



Challenges in Object Detection 
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Image credit: J. Koenderink 

Illumination variation 



Challenges in Object Detection 
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Scale 
Slide adapted from F. Li, A. Torralba 



Challenges in Object Detection 
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Slide adapted from S. Savarese 

Deformation 



Challenges in Object Detection 
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Slide adapted from F. Li and A. Torralba 

Occlusions 



Challenges in Object Detection 
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Image: Kilmeny Niland, 1995 
Slide adapted from S. Savarese 

Background clutter 



Challenges in Object Detection 
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Slide adapted from F. Li and A. Torralba 

Intra-class variation vs. specific object detection 



Object Detection with Local Features 
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• Can we make use of local features to detect a certain object in 
the scene? 

• Detect and match a set of local keypoints between model and 
scene (image) 

• Object detection is supposed to be invariant to different view 
points 

 

 

 
 

 

 

 

 Keypoints e.g. SIFT Image from D. Lowe 



Object Detection with Local Features 
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• Which transformations can we estimate, if we have only given 2D 
views on an object with 2D image locations of keypoints? 

• Affine transformations 

• Projective transformations (homography)  

 
 

 

 

 

 

Image from D. Lowe 



2D Affine Transformations 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 21 

• 2D affine transformations approximate perspective projection of 
planar objects 

 

 

 

 

 

 

 

 

• Can work well for (almost) planar objects and (almost) 
orthographic camera 

 
 

 

 

 

 

Image from D. Lowe 



2D Affine Transformations 
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• 2D affine transformations approximate perspective projection of 
planar objects 

 

 

 

 

 

 

• Parallel lines remain parallel 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Image from D. Lowe 
Image from A. Efros 



2D Affine Transformations 
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• Which basic transformations can we represent with affine 
transformations? 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

2D rotation 2D translation 

2D shearing 2D scaling 



Estimating 2D Affine Transformations 
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• Write constraints on affine transformation from multiple 2D 
point correspondences as 

 

 

 

 

 

 

 

• Linear least squares estimation 

𝜽 = 𝐀T𝐀
−1
𝐀T𝐛  
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•  Affine transformation does not consider the perspective distortion of a 
(pinhole) camera 

𝐲 ′ = 𝜔 ′𝐲 ′ = 𝜔 ′ 𝑧𝑐
′ −1𝐱′ = 𝜔𝐱′ 

𝐱′ = 𝑧𝑐𝑹𝐲 + 𝒕 

= 𝑧𝑐

𝑟11 𝑟12 𝑟13 + 𝑡𝑥
𝑟21 𝑟22 𝑟23 + 𝑡𝑦
𝑟31 𝑟32 𝑟33 + 𝑡𝑧

𝐲  

 

 

 

𝐲 ′ =

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

𝐲  

• due to scale ambiguity we can set ℎ33 = 1 

• Homography holds also for pixel coordinates 𝐲 𝑝 

• images of points on a 3D plane taken from different views are related by a 
homography 

Projective Transformation/Homography 



Projective Transformation/Homography 
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• Under a pinhole projection model, images of points on a 3D 
plane taken from different views are related by a homography 

 

      due to scale ambiguity  

      we can set 

 

 

 

• Parallel lines in 3D do not 
remain parallel in the image 

• Straight lines are preserved 

• Rectangle maps to  
quadrilateral 

 
 

 

 
 

 

Image from A. Efros 



Homography Example 
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Manual reconstruction 
by Martin Kemp, The 
Science of Art Image from A. Criminisi 



Estimating Homographies 
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• Each 2D point correspondence provides the constraints 

 

 

 

 
 
 

 

 

 

 

 
 

 

 

 

 



Estimating Homographies 
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• Constraints can be written as 
 

𝑥′ =
ℎ11𝑥 + ℎ12𝑦 + ℎ13
ℎ31𝑥 + ℎ32𝑦 + 1

 

𝑥′ℎ31𝑥 + 𝑥′ℎ32𝑦 + 𝑥′ = ℎ11𝑥 + ℎ12𝑦 + ℎ13 
𝑥′ = −𝑥′ℎ31𝑥 − 𝑥′ℎ32𝑦 + ℎ11𝑥 + ℎ12𝑦 + ℎ13 

 

𝑦′ =
ℎ21𝑥 + ℎ22𝑦 + ℎ23
ℎ31𝑥 + ℎ32𝑦 + 1

 

𝑦′ℎ31𝑥 + 𝑦′ℎ32𝑦 + 𝑦′ = ℎ21𝑥 + ℎ22𝑦 + ℎ23 
𝑦′ = −𝑦′ℎ31𝑥 − 𝑦′ℎ32𝑦 + ℎ21𝑥 + ℎ22𝑦 + ℎ23 



Estimating Homography 
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• Leads to a set of linear equations 

⋮
𝑥𝑖
′

𝑦𝑖
′

⋮

=

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑖 𝑦𝑖 1 0 0 0 −𝑥𝑖

′𝑥𝑖 −𝑥𝑖
′𝑦𝑖

0 0 0 𝑥𝑖 𝑦𝑖 1 −𝑦𝑖
′𝑥𝑖 −𝑦𝑖

′𝑦𝑖
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ℎ11
ℎ12
ℎ13
ℎ21
ℎ22
ℎ23
ℎ31
ℎ32

 

 

 

 

 

 
 

 

 

 

 



Monocular 3D Object Pose Estimation 
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• If we have a 3D model of keypoints 
on the object available, we can use 
PnP algorithms (see Lec. 6) to 
determine 3D rotation and 
translation of the object from 2D-to-
3D keypoint matches 

 

• How do we get the 3D model? 

 

• Example: Render textured CAD 
model from different viewpoints to 
extract descriptors 
and generate keypoint database 
with 3D coordinates in object 
coordinate frame  
 

 
 

 

 

 
 

 



3D Object Pose Estimation in RGB-D Images 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 32 

• With RGB-D images, we can also 
perform 3D-to-3D alignment of 
matched keypoints between 
model and image 

 

• Alternatively to 2D image points in 
RGB images, 3D shape keypoints 
and global shape descriptors of 
object segments have been 
proposed that can be extracted 
from the depth images 
 

 

 

 

 



Correspondence Grouping and Robust Alignment 
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• Methods described so far assume perfect correspondences 
between model and object 

 

• If keypoint matches are erroneous, direct least squares fitting will 
fail 

 

• If multiple objects are present in a scene, we need a process to 
group correspondences of each single object before alignment 

 

• However, methods still work for simple tasks like single object 
picking in controlled environment 



Correspondence Grouping and Robust Alignment 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 34 

• How can we group correspondences of multiple objects? 
• Approach 1: RANSAC (see Lec. 7) 

• Approach 2: Hough Transform (this lecture) 

 

• RANSAC correspondence grouping 
• Sample minimal set of matches to  

perform alignment and determine LS  
fit to best inlier set 

• Remove inliers and fit next object 

• Requires high number of iteration, 
since the outlier ratio (per 
object) is quite high 
 

 

 
  Image from Rabin et al. 2010 

Target object 



Correspondence Grouping and Robust Alignment 
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• Hough Transform 

• Each minimal set of matches needed 
for alignment votes in pose parameter 
space (using a discretization/histogram) 

 

• Object poses correspond to maxima in 
pose parameter histogram with 
sufficient number of votes 
 

 

 

 

 

 
 

 

 

 

 



Example: Line Fitting 
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• Extra edge points (clutter), multiple models: 
• Which points go with which line, if any? 

 

• Only some parts of each line detected, and 
some parts are missing: 
• How to find a line that bridges missing 

evidence? 

 

• Noise in measured edge points, orientations: 
• How to detect true underlying parameters? 

 
 

 

 

 
 

 

 

 
 

 

Slide adapted from K. Grauman 



Fitting Lines with the Hough Transform 
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• Given all points that belong to a line, what is 
the line? 

• How many lines are there? 

• Which points belong to which lines? 

 

• Hough Transform is a voting technique that 
can be used to answer all of these questions. 

 

• Main idea:  

• 1.  Record vote for each possible line on which 
an each edge point lies 

• 2.  Look for lines that get many votes 
 

 

 

 

 

 
 

 

 

 

 

Slide adapted from K. Grauman 



Fitting Lines with the Hough Transform 
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Slide adapted from S. Seitz 

Connection between image (x,y) and Hough (m,b) spaces 

• A line in the image corresponds to a point in Hough space 

• To go from image space to Hough space: 
– given a set of points (x,y), find all (m,b) such that y = mx + b 

x 

y 

m 

b 

m0 

b0 

image space Hough (parameter) space 



Fitting Lines with the Hough Transform 
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Slide adapted from S. Seitz 

Connection between image (x,y) and Hough (m,b) spaces 

• A line in the image corresponds to a point in Hough space 

• To go from image space to Hough space: 
– given a set of points (x,y), find all (m,b) such that y = mx + b 

• What does a point (x0, y0) in the image space map to? 

x 

y 

m 

b 

image space Hough (parameter) space 

– Answer:  the solutions of b = -x0m + y0 

– this is a line in Hough space 

x0 

y0 



Fitting Lines with the Hough Transform 
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Slide adapted from K. Grauman 

What are the line parameters for the line that contains both (x0, y0) and (x1, y1)? 

• It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1  

 

x 

y 

m 

b 

image space Hough (parameter) space 

x0 

y0 

b = –x1m + y1 

(x0, y0) 

(x1, y1) 



Fitting Lines with the Hough Transform 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 41 
Slide adapted from K. Grauman 

x 

y 

m 

b 

image space Hough (parameter) space 

How can we use this to find the most likely parameters (m,b) for the most 
prominent line in the image space? 

• Let each edge point in image space vote for a set of possible parameters in Hough 
space 

• Accumulate votes in discrete set of bins; parameters with the most votes indicate 
line in image space 

 



Polar Line Representation 
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Slide adapted from K. Grauman 

• Issues with usual (m,b) parameter space: can take on infinite values, 

undefined for vertical lines. 

• Use polar representation of lines 

• Point in image space  sinusoid segment in Hough space 

 

    : perpendicular distance 

from line to origin 

   : angle between the 

perpendicular and the x-axis 

 

dyx   sincos

d



[0,0] 

d



x

y



Hough Transform Algorithm (for Lines) 
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Slide adapted from K. Grauman 

Using the polar parameterization: 

 

 

Basic Hough transform algorithm 

1. Initialize H[d, ]=0 

2. for each edge point I[x,y] in the image 

    for  = [min  to  max ]  // some quantization 

 

    H[d, ] += 1 

3. Find the value(s) of (d, ) where H[d, ] is maximum 

4. The detected line in the image is given by 

H: accumulator array (votes) 

d 

 

dyx   sincos

 sincos yxd 

 sincos yxd 



Fitting Lines with the Hough Transform 
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Slide adapted from K. Grauman 

Showing longest segments found 



Impact of Noise on the Hough Transform 
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Slide adapted from K. Grauman 

Image space 
edge coordinates 

Votes 

 x 

y d 



Impact of Noise on the Hough Transform 
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Slide adapted from K. Grauman 

Image space 
edge coordinates 

Votes 

 x 

y d 



Extensions 
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Slide adapted from K. Grauman 

Extension 1:  Use the image gradient 

1. same 

2. for each edge point I[x,y] in the image 

     = gradient angle at (x,y) 

 
    H[d, ] += 1 

3. same 

4. same 

(Reduces degrees of freedom) 

 sincos yxd 



Extensions 
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Slide adapted from K. Grauman 

Extension 1 

• Use the image gradient 

 

 

Extension 2 

• Give more votes for stronger edges (use magnitude of gradient) 

 

Extension 3 

• Change the sampling of (d, ) to give more/less resolution 

 

Extension 4 

• The same procedure can be used with circles, squares, or any other 
analytically defined shape … 

 

Can we generalize the Hough transform to any arbitrary shape? 



Generalized Hough Transform 
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• Define a model shape by its boundary (edge) points and a 
reference point 

(Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980) 

x a 

p1 

θ 

p2 

θ 

At each boundary point, 
compute displacement vector: 
r = a – pi 
 
Store these vectors in a table 
indexed by gradient 
orientation θ 

Offline procedure:  

Model shape 

θ 

θ 

…
 

… 

… 

Slide adapted from K. Grauman 



Generalized Hough Transform 
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[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980] 

Model shape 

θ 

θ 

…
 

… 

… 

Slide adapted from K. Grauman 

  

 

p1 

θ 
θ 

For each edge point: 

• Use its gradient orientation to index 
into stored table  

• Use retrieved r vectors to vote for 
reference point 

Detection procedure:  
x 

θ 
θ 

Novel image 

θ 

x x 

x x 



Generalized Hough Transform 
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B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV 

Workshop on Statistical Learning in Computer Vision 2004 

 
Slide adapted from K. Grauman 

• Instead of indexing displacements by gradient orientation, 
index by “visual codeword” 

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Hough Voting: 2D-to-2D Matching 
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• Oriented local 2D keypoint matches cast votes for affine 
transformations (f.e. 2D translation, scale & 2D rotation) 
 

 

 

 

 

Slide adapted from S. Lazebnik 



Lessons Learned Today 
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• Object detection is about localization and recognition of objects 
in images 

 

• 3D object detection:  

• pose estimation of specific objects 

• From 2D-to-2D keypoint correspondences to an object model we 
can estimate affine and projective transformations 

• If we have 3D position of keypoints in a model available, we can 
apply PnP algorithms to estimate 6-DoF pose 

 

• Generalized Hough transform as alternative to RANSAC for 
correspondence grouping and robust alignment 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    

 

 

 

 

 

 

 

Slides Information 
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