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What We Will Cover Today 
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• 3D keypoint detectors and local descriptors 

 

• Global 3D object descriptors 

 

• Iterative closest points algorithm 

 

 
 

 

 

 

 



3D Object Detection with Local Keypoints 
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• Detect and match a set of  
local keypoints between  
model and scene 

 

• Locality of keypoints provides  
robustness against occlusions 

 

• Local keypoints should be distinctive and repeatable, combined 
properties of detector and descriptor! 

 

• Alignment for pose estimation: 
• 3D-to-3D alignment 

• Pose voting from keypoint match through local reference frames 

 

 
 

 

 
 

 

Image from pointclouds.org 



3D Object Detection with Local Keypoints 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 4 

• Render views of 3D CAD 
models and extract 
keypoints for 
rendered views 

 

• Or Extract keypoints directly 
from 3D object models (f.e. 
CAD or scanned) 

• Rely only on geometry 

• Not on visual appearance 
 

 

 

 

 



3D Keypoint Detectors 
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• Strategy 1: Uniform spatial 
sampling 

 

• Strategy 2: Detection of 
keypoints at maxima of 3D 
interest measures 
• Intrinsic Shape Signatures 

(ISS) Detector, Zhong 2009 

• Harris3D 

• … 

 

• Extraction of a local reference 
frame 
 

 
 

 

 
 

 

Image from Unnikrishnan and Hebert, 2008 
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3D Surface Representation 

• 3D points in general represent object surface 

• 3D points don’t give insight on surface orientation and 
which points belong to the same surface 

 

• Use surface elements (Surfels) to 
represent object surface 

• Point on a surface is defined by its 

• 3D localtion 

• Surface normal 

• Color 

• etc. 

 
 

 

 

 

 

Pfister et al., SIGGRAPH 2000 Image from Y. Sheikh 
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3D Surface Representation 

• How to obtain surface normals for a set of 3D points 

𝐩𝑖 =
1

𝑁
 𝐩𝑗

𝑗: 𝐩𝑗−𝐩𝑖 <𝑟

with 𝑁 = 𝑗: 𝐩𝑗 − 𝐩𝑖 < 𝑟  

𝚺 𝐩𝑖 =  𝐩𝑗 − 𝐩𝑖 𝐩𝑗 − 𝐩𝑖 
𝑇

𝑗: 𝐩𝑗−𝐩𝑖 <𝑟

 

 

• Sometimes 𝐩𝑖  is replace by the point 𝐩𝑖  itself 
 

• We obtain the surface normal as the eigenvector 
corresponding to the smallest eigenvalue of the 
covariance matrix 𝚺 𝐩𝑖  

 

• Unique direction can be obtained based on sensor view point 
for instance 

Pfister et al., SIGGRAPH 2000 



Recap: Structure Tensor 

Eigenvalues and eigenvectors of H 
• Define shifts with the smallest and largest change (E value) 

• x+ = direction of largest increase in E.  

• + = amount of increase in direction x+ 

• x- = direction of smallest increase in E.  

• - = amount of increase in direction x- 

 x- 

 x+ 
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Slide adapted from Steve Seitz 

„structure tensor“ 



Recap: Harris Operator 

• “Harris operator” for corner detection 

 

 

 

 

 
• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22 

• Very similar to - but less expensive (no square root) 

• Called the “Harris Corner Detector” or “Harris Operator” 

• Lots of other detectors, this is one of the most popular 
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Slide adapted from Steve Seitz 



Harris3D 
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• Replace image gradients with surface normals  
     W: 3D window, f.e. sphere 

• Different response functions: 

 

 
 

 

 

 

 

Image from S Gedikli and S Holzer 



Harris5D 
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• Can be extended to combined use both color and geometry 

• By stacking image gradients and normals 

 
 

 

 

 

 

Image from S Gedikli and S Holzer 



Intrinsic Shape Signatures (ISS) Detector 
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• Interest measure based on covariance of 
local point distribution 
 
 
 

• Weights account for varying point density 
 
 

• Compute eigenvalues of local covariance    
 
 

• Find local maxima of smallest eigenvalue 
• Constrain by thresholds 
𝜆2
𝜆1
< 𝛾21

𝜆3
𝜆2
< 𝛾32 

• to find points with well conditioned eigen 
vector directions  
 

 
 

 

 

 
 
 

Image from F. Tombari Y. Zhong, Intrinsic shape signatures: A shape descriptor for 3D object recognition, 2009  

𝑑 

𝑗 ≠ 𝑖 



Local Reference Frame 
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• Extract local reference frames from 
eigen vectors to align rotation-
variant descriptor 

• Similar to orientation of 2D image 
keypoint 

• 4 possible cases for right-handed 
frame 

 

 

 

 
 

 

 

 

 

Image from F. Tombari Image from Y. Zhong, 2009  



Local Reference Frame: Disambiguation 
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• Disambiguate the 4 possible cases by quantifying the 
support of the directions 

• Directions and opposite directions of eigenvectors: 

 

 

• Choose x-axis according to  
strongest support 

 

 

 

 

• z-direction analogously, y through  

 

 

 
 

 

 

 

 

Image from Y. Zhong, 2009 



3D Keypoint Descriptors 
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• Typical approach: Describe local distribution of points and/or 
surface normals 

 

• How to achieve rotation invariance? 

 

• Popular descriptors: 

• Fast Point Feature Histograms (FPFH) 

• Signature of Histograms of Orientations (SHOT) 

• … 

 

 

 
 

 

 

 

 



Surfel-Pair Relations 
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• Define descriptor based on relationship between surfels 

• Surfel                                 : point 𝐩 with normal 𝐧 

• Surfel-pair: 

• Source: (𝐩𝑠, 𝐧𝑠) 

• Target: (𝐩𝑡 , 𝐧𝑡) 

 

 

 

 
 

 

 

 

 

Image from R Rusu, Diss. 2009 



Surfel-Pair Relations 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 17 

• Features: geometric relations between two surfels 
  𝑓1 = 𝐯

T𝐧𝑡  𝑓3 = atan2(𝐰
T𝐧𝑡) 

 
  𝑓2 = 𝐮

T  𝑓4 = 𝐩𝑡 − 𝐩𝑠 2 
 
• Construct repeatable local coordinate frame between surfels 
• Compute 4 features from constructed frame, normal and point 

coordinates 
• Rotation-invariant features! 

 
 

 
 

 

 

Image from R Rusu, Diss. 2009 

𝐮 = 𝐧𝑠 

𝐯 =
𝐩𝑡 − 𝐩𝑠
𝐩𝑡 − 𝐩𝑠 2

× 𝐮 

𝐰 = 𝐮 × 𝐯 



Point Feature Histogram (PFH) 
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• Describe local neighborhood of a point by histogram of  
surfel-pair relations 

• Neighborhood is defined by a certain radius 𝑟 

 

• Calculate 4D histogram based on 
surfel-pair relation features 

• 4D histogram can be stacked in a 1D 
vector 

 

• 𝑓4 heavily depends on local point 
density  omit 𝑓4 e.g. if point density 
depends on sensor view point 

• RGB-D camera: density depends on depth (distance to sensor) 

 

 

 

 

 

 
 

 

 

 

 

Image from R Rusu, Diss. 2009 



Point Feature Histogram (PFH) 
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• Examples of Point feature Histograms 

• Similarity measure based on histogram intersection 

𝑑 𝑃𝐹𝐻1, 𝑃𝐹𝐻2 =  min(𝑃𝐹𝐻1[𝑖], 𝑃𝐹𝐻2[𝑖])

𝑁bins

𝑖=1

 

Image from R Rusu, Diss. 2009 



Fast Point Feature Histogram (FPFH) 
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• PFH has complexity 𝑂 𝑛𝑘2  

• where 𝑛 is the number of points in the point cloud and 𝑘 is the 
number of considered neighbors for each point  

• Fast Point Feature Histogram (FPFH) 

• Simplified Point Feature Histogram (SPFH) 

• Based on surfel-pair relations between 
point and its local neighbors 

• Accumulate SPFHs in local point 
neighborhood to obtain FPFH 

 

 

• Some relations are contributing twice 

• Additional relations are added 

 

 

 

 

 
 

 

 

 

 

Image from R Rusu, Diss. 2009 

Distance between points 



Fast Point Feature Histogram (FPFH) 
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Images from R Rusu, Diss. 2009 



Signature of Histograms of Orientations (SHOT) 
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• Describe spatial distribution of relative surface 
orientation around a keypoint 

• Discretize spherical volume around keypoint 

• Discretize spatial bins into angular bins 

• For each neighboring point, determine spatial bin and the angular 
bin for the angle between its surface normal and the normal of the 
keypoint 

• Align spherical grid with local reference frame to obtain rotation-
invariance 

 

 

 

 

 Images from F. Tombari 



Deep Learning Based Features 
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• Deep Learning based 3D detectors and descriptors did gain 
popularity in recent years 

• Challenge is the irregular structure of 3D point clouds 

• Initial approaches didn’t consider spatial neighborhood of points, 
e.g. 

• PointNet, CVPR 2017 

• Recent approaches try to mimic convolutions on point clouds based 
on local neighborhood operations, e.g. 

• Groh et al. Flex-Convolution, ACCV 2018 

• Li et al. PointCNN, NIPS 2018 

• … 

• In gereral require fixed size point cloud 



Deep Learning Based Features 
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• Keypoint detector 

• USIP: Unsupervised Stable 
Interest Point Detection 
from 3D Point Clouds 

• Li et al., ICCV 2019 

 

 

• Local 3D point descriptor 

• DH3D: Deep Hierarchical 
3D Descriptors for Robust 
Large-Scale 6DoF Relocalization 

• Du et al., ECCV 2020 



Pose Refinement 
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• So far, detection strategies provide only a coarse pose estimate 
• Based on keypoint associations (only subset of points) 

• Popular strategy for pose refinement 
• Iterative Closest Points (ICP) 

• Align scene measurements with model point cloud 
• Using all available points 

 
 

 

 
 

 

Scene 

Model 

Images from pointclouds.org 



Iterative Closest Points (ICP) 
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• Key Idea 

• If we knew the correspondences of points between scene and 
model, we could directly solve for the 3D-to-3D motion 
(rotation/translation) estimate 

 
 

 

 

 

 

Image from Cyrill Stachniss 



Recap: 3D-to-3D Motion Estimation 

• Given corresponding 3D points  
in two camera frames 
 
 
 
determine relative camera pose 

 

• Idea: determine rigid transformation that aligns the 3D points 

 

• Geometric least squares error: 

 

• Closed-form solutions available, f.e. Arun et al., 1987 

• Applicable e.g. to RGB-D cameras or also Lidar 
• Should only be used if we have very accurate depth 
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Recap: 3D Rigid-Body Motion from 3D-
to-3D Matches 

• Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 
1987 

• Corresponding 3D points, 
                                        

 
• Determine means of 3D point sets  

 
 
 

• Determine rotation from 
 
 
 

• Determine translation as 
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Iterative Closest Points (ICP) 
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• If the correct correspondences are not known, it is generally 
impossible to determine the optimal relative motion 
(rotation/translation) in one step 

 

• Idea: Iteratively and alternatingly estimate correspondences and 
pose alignment between point sets                         and 

 
 

 

 

 

 

determine 
correspondences 

align corresponding 
points 



Iterative Closest Points (ICP) 
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• Idea: Iteratively and alternatingly estimate correspondences and 
pose alignment between point sets                         and 

 
 

 

 

 

 

Image adapted from Cyrill Stachniss 



Keypoint Alignment and ICP Example 
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https://www.youtube.com/watch?v=uzOCS_gdZuM 
 

https://www.youtube.com/watch?v=uzOCS_gdZuM
https://www.youtube.com/watch?v=uzOCS_gdZuM


Data Association for ICP 
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• Closest-points matching 

 

 

 

 

• Normal shooting 

• Requires normal calculation 

• Better convergence than 
closest-point for smooth 
structures  

 

 

 
Images from Cyrill Stachniss 



Projective Data Association 
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• For aligning depth or point measurements from a sensor, we 
can use projective data association 

 

• Warping of 
measured 
3D point 

 

• Analogous  
association 
as in direct image  
alignment! 

 

 
 

 

 

 

 

Image from R. Newcombe 2013 



Outlier Rejection for ICP 
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• Optionally perform 
outlier rejection 

Images from Holz et al., 2015 



ICP Alignment Objectives 
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• Alignment objectives: point-point, point-plane, GICP 

 

 
 

 

 

 

 

Images from Holz et al., 2015 



ICP Alignment Objectives 
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• Point-to-Point vs. Point-to-plane 

• Requires normal calculation for one of the point clouds 

• Each iteration is generally slower than point-to-point version 

• However, often significantly better convergence rate 

• Using point-to-plane distance instead of point-to-point lets flat 
regions slide along each other 

 

 
 

 

 

 

 
Images  from Cyrill Stachniss 



ICP Alignment Objectives 
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• Generalized ICP 

• Probabilistic modelling of point clouds 

• Where to get covariance matrices from 

• directly available from sensor measurements 

• Can be estimated from point distribution 

• Covariance matrices need to be calculated for both point clouds 

 

 

 

 
 

 

 

 

 



Lessons Learned Today 
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• 3D object detection with local 3D keypoints 

 

• 3D keypoint detector derived from 2D detector, e.g. Harris3D 

 

• Intrinsic Shape Signatures detector: points at strong surface 
curvature 

 

• 3D keypoint description 

• Extraction of local 3D reference frame from point distribution 

• PFH, SHOT descriptors 

 

• Iterative Closest Points algorithm for point cloud alignment 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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