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What We Will Cover Today 
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• Iterative closest points algorithm (leftover from last lecture) 

 

• Introduction to object tracking 

 

• Tracking-by-registration 

 

• Multi-object tracking based on filtering 

 

 
 

 

 

 

 



Recap: Object Detection with Local Features 
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• Can we make use of local features to detect a certain object in 
the scene? 

• Detect and match a set of local keypoints between model and 
scene (image) 

• Object detection is supposed to be invariant to different view 
points 

 

 

 
 

 

 

 

 Keypoints e.g. SIFT Image from D. Lowe 



Recap: Hough Voting: 2D-to-2D Matching 
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• Oriented local 2D keypoint matches cast votes for affine 
transformations (f.e. 2D translation, scale & 2D rotation) 
 

 

 

 

 

Slide adapted from S. Lazebnik 



Recap: 3D Object Detection with Local 
Keypoints 
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• Render views of 3D CAD 
models and extract 
keypoints for 
rendered views 

 

• Or Extract keypoints directly 
from 3D object models (f.e. 
CAD or scanned) 

• Rely only on geometry 

• Not on visual appearance 
 

 

 

 

 



Pose Refinement 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 6 

• So far, detection strategies provide only a coarse pose estimate 
• Based on keypoint associations (only subset of points) 

• Popular strategy for pose refinement 
• Iterative Closest Points (ICP) 

• Align scene measurements with model point cloud 
• Using all available points 

 
 

 

 
 

 

Scene 

Model 

Images from pointclouds.org 



Iterative Closest Points (ICP) 
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• Key Idea 

• If we knew the correspondences of points between scene and 
model, we could directly solve for the 3D-to-3D motion 
(rotation/translation) estimate 

 
 

 

 

 

 

Image from Cyrill Stachniss 



Recap: 3D-to-3D Motion Estimation 

• Given corresponding 3D points  
in two camera frames 
 
 
 
determine relative camera pose 

 

• Idea: determine rigid transformation that aligns the 3D points 

 

• Geometric least squares error: 

 

• Closed-form solutions available, f.e. Arun et al., 1987 

• Applicable e.g. to RGB-D cameras or also Lidar 
• Should only be used if we have very accurate depth 
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Recap: 3D Rigid-Body Motion from 3D-
to-3D Matches 

• Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 
1987 

• Corresponding 3D points, 
                                        

 
• Determine means of 3D point sets  

 
 
 

• Determine rotation from 
 
 
 

• Determine translation as 
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Iterative Closest Points (ICP) 
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• If the correct correspondences are not known, it is generally 
impossible to determine the optimal relative motion 
(rotation/translation) in one step 

 

• Idea: Iteratively and alternatingly estimate correspondences and 
pose alignment between point sets                         and 

 
 

 

 

 

 

determine 
correspondences 

align corresponding 
points 

argmaxc argmaxξ 



Iterative Closest Points (ICP) 
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• Idea: Iteratively and alternatingly estimate correspondences and 
pose alignment between point sets                         and 

 
 

 

 

 

 

Image adapted from Cyrill Stachniss 



Keypoint Alignment and ICP Example 
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https://www.youtube.com/watch?v=uzOCS_gdZuM 
 

https://www.youtube.com/watch?v=uzOCS_gdZuM
https://www.youtube.com/watch?v=uzOCS_gdZuM


Data Association for ICP 
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• Closest-points matching 

 

 

 

 

• Normal shooting 

• Requires normal calculation 

• Better convergence than 
closest-point for smooth 
structures  

 

 

 
Images from Cyrill Stachniss 



Projective Data Association 
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• For aligning depth or point measurements from a sensor, we 
can use projective data association 

 

• Warping of 
measured 
3D point 

 

• Analogous  
association 
as in direct image  
alignment! 

 

 
 

 

 

 

 

Image from R. Newcombe 2013 



Outlier Rejection for ICP 
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• Optionally perform 
outlier rejection 

Images from Holz et al., 2015 



ICP Alignment Objectives 
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• Alignment objectives: point-point, point-plane, GICP 

 

 
 

 

 

 

 

Images from Holz et al., 2015 



ICP Alignment Objectives 
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• Point-to-Point vs. Point-to-plane 

• Requires normal calculation for one of the point clouds 

• Each iteration is generally slower than point-to-point version 

• However, often significantly better convergence rate 

• Using point-to-plane distance instead of point-to-point lets flat 
regions slide along each other 

 

 
 

 

 

 

 
Images  from Cyrill Stachniss 



ICP Alignment Objectives 
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• Generalized ICP 

• Probabilistic modelling of point clouds 

• Where to get covariance matrices from 

• directly available from sensor measurements 

• Can be estimated from point distribution 

• Covariance matrices need to be calculated for both point clouds 

 

 

 

 
 

 

 

 

 



What is Object Tracking? 

Robotic 3D Vision 

• Goal 

• Estimate the number and state of objects in a region of interest 
 

• State 

• We are using the term state to describe a vector of quantities that 
characterize the object being tracked.  
 

    E.g. [x, y]    (location) 

  [x, y, dx, dy]   (location + velocity) 
 

• Because observations are typically noisy, estimating the state vector 
is a statistical estimation problem. 

Slide adapted from Robert Collins 
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What is Object Tracking? 

Robotic 3D Vision 

• Goal 

• Estimate the number and state of objects in a region of interest 
 

• Variety of objects to track (e.g. persons, cars) 

• 3D tracking: Tracking 3D location of an object 

• W.r.t. camera frame or world frame (requires ego-motion 
compensation) 

• Articulated tracking: e.g. tracking body pose 

Image sources: Kristen Grauman, Michael Breitenstein, Ahmed Elgammal 
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Types of Tracking 

Robotic 3D Vision 

• Single-object tracking  

• Focuses on tracking a single target in isolation. 

[Z. Kalal, K. Mikolajczyk, J. Matas, PAMI’10] 
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(Li, Qin, Shen, ECCV 2018)  
https://www.youtube.com/watch?v=nE2XtCvPEDk 

• Multi-object tracking 

Types of Tracking 

https://www.youtube.com/watch?v=nE2XtCvPEDk
https://www.youtube.com/watch?v=nE2XtCvPEDk


Types of Tracking 

Robotic 3D Vision 

Slide credit: Robert Collins 

• Articulated tracking  

• Tries to estimate the motion of objects with multiple, coordinated 
parts 

[I. Matthews, S. Baker, IJCV’04] 
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Types of Tracking 

Robotic 3D Vision 

Slide credit: Robert Collins 

• Active tracking  

• Involves moving the sensor in response to motion of the target. 
Needs to be real-time! 

• Due to control feed-back, latency is quite important 
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Applications: Safety & Security 

Robotic 3D Vision 

Slide credit: Kristen Grauman 

Autonomous robots Driver assistance Monitoring pools 
(Poseidon) 

Pedestrian detection 
[MERL, Viola et al.] 

Surveillance 
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Applications: Human-Computer 
Interaction 

Robotic 3D Vision 

Slide adapted from Kristen Grauman 

Assistive technology systems 
Camera Mouse 

(Boston College) 

Games 
(Microsoft Kinect) 
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Applications: Visual Effects 

Robotic 3D Vision 

MoCap for Pirates of the Carribean, Industrial Light and Magic 

Slide adapted from Steve Seitz, Svetlana Lazebnik, Kristen Grauman 
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Factors: Distinguishability 

Robotic 3D Vision 

• How easy is it to distinguish one object from another? 

Appearance models can 
do all the work 

Constraints on geometry 
and motion become crucial 

Slide credit: Robert Collins 
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Factors: Frame Rate 

Robotic 3D Vision 

Slide credit: Robert Collins 

 

Much harder search 
problem. Good data 
association becomes 
crucial. 
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Using state prediction 
for data association 
might be sufficient 



Other Factors 

Robotic 3D Vision 

• Single target vs. multiple targets 

• Single camera vs. multiple cameras 

• On-line vs. batch mode 

• Do we have a good generic detector?  
(e.g., faces, pedestrians) 

• Does the object have multiple parts? 

• ... 

Slide credit: Robert Collins 
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Elements of Tracking 

Robotic 3D Vision 

Image credit: Kristen Grauman 

 

 

 

 
 

• Detection 

• Find the object(s) of interest in the image. 
 

 
 

… 

t=1 t=2 t=20 t=21 
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Elements of Tracking 

Robotic 3D Vision 

 

 

 

 
 

• Detection 

• Find the object(s) of interest in the image. 
 

• Association 

• Determine which observations come from the same object. 
 

… 

t=1 t=2 t=20 t=21 

Image credit: Kristen Grauman 
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Elements of Tracking 

Robotic 3D Vision 

… 

t=1 t=2 t=20 t=21 

 

 

 

 
 

• Detection 
• Find the object(s) of interest in the image. 

 

• Association 
• Determine which observations come from the same object. 

 

• Prediction  
• Predict future motion based on the observed motion pattern. 

• Use this prediction to improve detection and data association  
in later frames. 

Image credit: Kristen Grauman 
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3D Object Tracking Approaches 

Robotic 3D Vision 

• Strategy 1: Tracking-by-detection 

• Detect object in each frame individually 

 

• Strategy 3: Tracking-by-registration 

• From an initial guess (detection) perform incremental 
registration 

 

• Strategy 2: Tracking-by-filtering 

• Detect object as measurement within probabilistic filter 

 

Dr. Niclas Zeller, Artisense GmbH 34 



Tracking-by-Registration 

Robotic 3D Vision 

• Consider the following approach: 

• Describe object as a set of points                              in its reference 
frame 

• Optimize for the pose                      that aligns object points with 
measurements                             at each time step 

 

 

• Non-linear least squares… 

• However this requires to decide  

• which scene points belong to the object (segmentation) 

• which object and scene points correspond to each other 

• Could be solved using an ICP-like approach 
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Elements of Tracking 

Robotic 3D Vision 

 

 

 

 

 

• Detection: Where are candidate objects? 

 

• Data association: Which detections belong to the same object? 

 

• Prediction: Where will a tracked object be in the next time step? 
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Slide credit: Bastian Leibe 



Recap: Probabilistic Model of Time-Sequential 
Processes 
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• Hidden state X gives rise to noisy observations Y 

• At each time t,  

• the state changes stochastically from Xt-1 to Xt  

• state change depends on action Ut  

• we get a new observation Yt 

 

 
 

 

 

 

 

X0 X1 

Y0 Y1 

Xt 

Yt 

… 

U0 U1 Ut … 

… 



• Only the immediate past matters for a state transition 

 

 

 
 

• Observations depend only on the current state 
 

 

 

 

 

Recap: Markov Assumptions 
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   tttttt UXXpUXXp ,, 1:01:0  

   tttttt XYpYUXYp 1:0:0:0 ,,

state transition model 

observation model 

X0 X1 

Y0 Y1 

Xt 

Yt 

… 

U0 U1 Ut … 

… 



 

• Prediction: 

 

 

 

 
 

 

• Correction: 

 
 

 

Recap: Predict-Correct Cycle 
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      11:01:011:01:0 ,|,|,|   tttttttttt dXuyXpuXXpuyXp

 
   

    


tttttt

ttttt
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dXuyXpXyp

uyXpXyp
yyXp

:01:0

:01:0
0

,||

,||
,,| 

tuty

observation action 



• Approach: probabilistic filtering of position, velocity, etc. of each 
object track (state)         based on measurements 

 

 

• One filter per object 

 

• Data association before correction step 

 

• Unassociated measurements create new tracks 

 

• Discard tracks that cannot be associated to measurements 
 

 

Multi-Object Tracking by Filtering 
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Recap: Extended Kalman Filter (EKF) 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 41 

• Non-linear state-transition model with Gaussian noise: 

 

 

• Non-linear observation model with Gaussian noise: 

 

 

• How to cope with non-linear system? 

 

• Idea: linearize the models in each time step 

 

 



Recap: EKF Prediction & Correction 
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• Efficient approximate correction and prediction steps which 
involve manipulation of Gaussians and linearization 

• The state estimate can be represented as a Gaussian distribution 

 

 

• Prediction: 

 

 

• Correction: 

 

 
: 

: 



Robotic 3D Vision 

• Predictions may not be supported by detections 

• Occlusion or end of track? 

• Unexpected measurements 

• New objects or outliers? 

• Correspondence ambiguity for a prediction 

• Which measurement is the correct one? 

• Correspondence ambiguity for a measurement 

• Which object track shall the measurement belong to? 
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What Makes Multi-Object Tracking Difficult? 



• Gating 

• Only consider measurements within a 
certain area around the predicted location 
 

Large gain in efficiency, since only a small 
region needs to be searched 
 

• Nearest Neighbor Association 

• Among the candidates in the gating region, 
only take the one closest to the prediction 

 

 

Gating Nearest Neighbor Data Association 
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Slide adapted from Bastian Leibe 



• Recall: Kalman Filter 
• Maintains a Gaussian state estimate        , 

 
• Perform gating based on the distribution of prediction and 

measurement 
𝒩(ℎ 𝝁𝑡

− , 𝚺𝑚𝑡 +𝐇𝑡𝚺𝑡
−𝐇𝑡

𝑇) 
 

• Mahalanobis Distance 
  𝑑2 = 𝒚 − 𝝁 𝑇𝚺−1 𝒚 − 𝝁  
 
 𝝁 = ℎ 𝝁𝑡

−  𝚺 = 𝚺𝑚𝑡 +𝐇𝑡𝚺𝑡
−𝐇𝑡

𝑇 
 

• Gating volume is ellipsoidal 
• E.g. choose volume that corresponds to 

95% of probability mass 
• 𝑑2 is χ2-distributed  look up threshold from table 

Gating with Mahalanobis Distance 
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Slide adapted from Bastian Leibe 



• Limitations 
• For NN assignments, there is always a finite chance that the association is 

incorrect, which can lead to serious effects 

 If a Kalman filter is used, a falsely assigned measurement may lead the 
filter to lose track of its target 

 

• The NN filter makes assignment decisions only based on the current frame 

• More information is available by examining subsequent images 

Data association decisions could be postponed until a future frame will 
resolve the ambiguity 

 

• More powerful approaches 
• Multi-Hypothesis Tracking (MHT) 

• Well-suited for KF, EKF approaches 

• Particle filter based approaches 

Problems with NN Assignment 
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Slide adapted from Bastian Leibe 



Lessons Learned Today 
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• Object tracking involves detection, motion estimation 
(prediction) and data association over time 

 

• 3D object tracking of an object model through registration 

• ICP-based tracking-by-registration 

 

• Multi-object tracking involves a harder data association problem 

• Gated Nearest Neighbor filter 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    

 

 

 

 

 

 

 

Slides Information 
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