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What We Will Cover Today 

Robotic 3D Vision 

• Stereo Rectification 

 

• Dense Depth Reconstruction from Two and Multiple Views 

• Dense Correspondence Search 

• Regularization 

 

• Depth Sensors 

• Structured light 

• Time-of-flight 
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Stereo Perception 

Robotic 3D Vision 

Image credit: D. Scaramuzza 
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Dense Depth from Two Views 

Robotic 3D Vision 

• So far: triangulation of 
corresponding interest points 
between two images to find 
depth 
 

• How can we obtain depth 
densely for all pixels in an 
image? 
 

• Assume relative pose 
between the camera images 
known 
 

• Assume intrinsic camera 
calibration known 

Image source: Scharstein et al., Middlebury stereo benchmark 
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Sparse 3D Reconstruction 
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Image credit: D. Scaramuzza 



Dense 3D Reconstruction 
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Image credit: D. Scaramuzza 



Recap: Epipolar Geometry 

• Camera centers    ,    and image point              span the epipolar plane  
• The ray from camera center     through point      projects as the epipolar 

line      in image plane  
• The intersections of the line through the camera centers with the image 

planes are called epipoles    , 
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Epipolar Lines, Converging Cameras 
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Epipolar Lines, Parallel Cameras 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 9 



Stereo Image Rectification 
• Correspondence 

search is simplified, if 
epipolar lines are 
horizontal (or vertical) 

 

• Idea: Rectify images 
• warp the images 

onto a common 
image plane  

• only horizontal or 
vertical translation 
between the „new“ 
camera frames 

• Equal intrinsics 
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Stereo Rectification (1) 
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camera intrinsics 
matrix 

3D rotation 
matrix 3D point 

in world 
frame 

3D translation/ 
camera center in 
world frame 

Slide adapted from D. Scaramuzza 



Stereo Rectification (1) 
• In the following for convenience, we will write the 

perspective projection of a 3D point expressed in the world 
frame into the camera frame as 
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camera intrinsics 
matrix 

3D rotation 
matrix 

3D point 
in world 
frame 

3D translation/ 
camera center in 
world frame 

Slide adapted from D. Scaramuzza 



Stereo Rectification (2) 
Left camera projection:                    Right camera projection: 
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Slide adapted from D. Scaramuzza 



Stereo Rectification (3) 
Goal: warp left and right images such that image planes 
coplanar and intrinsics are equal 
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Slide adapted from D. Scaramuzza 



Stereo Rectification (3) 
Solving for 3D point for each camera yields homographies 

Left camera: 
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Slide adapted from D. Scaramuzza 



Stereo Rectification (4) 
Solving for 3D point for each camera yields homographies 
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Slide adapted from D. Scaramuzza 



Stereo Rectification (5) 
• How to choose the new intrinsics and rotation ? 

• Fusiello et al., A Compact Algorithm for Rectification of 
Stereo Pairs, Mach. Vision and Appl. 1999 

• Choose 
 
 
where 
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Slide adapted from D. Scaramuzza 

Vector 𝐶𝑅 − 𝐶𝐿 is supposed to be aligned with 
the x-axis of the camera coordinate frame 

𝐶𝑅 − 𝐶𝐿
𝐶𝑅 − 𝐶𝐿

 



Stereo Rectification Example 

Robotic 3D Vision 

Image source: Loop and Zhang, 2001 

rectified 
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Disparity 

Robotic 3D Vision 

• Assume rectified stereo images 

• Disparity: (horizontal) pixel difference of corresponding pixels 
between the two images 

Left camera 

Right camera 

Point 

Disparity 
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Relation of Disparity and Depth 

Robotic 3D Vision 

• Disparity is inverse proportional to depth: 
• The larger the depth, the smaller the disparity 

• Disparity is proportional to the baseline: 
• The larger the baseline, the larger the disparity 
• Larger baseline means also higher depth accuracy 

 

Similar triangles: 
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Relation of Disparity and Depth 

Robotic 3D Vision 

Disparity image Depth image 
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Dense Stereo Depth Estimation 
• For each pixel in left image: 

• Compare photoconsistency with every pixel on the corresponding epipolar 
line in the right image 

• Pick pixel with best similarity 
 
 
 
 
 
 

 
 

• Problems:  
• Noise 
• Intensity of a single pixel not very distinctive 
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Dense Stereo Depth Estimation 
• Better idea: Compare patches (blocks) 

 

 

 

 

 

 

 

 

• New questions: 
• What are good patch correlation measures? 

• Patch size? 

• etc. 
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Block Matching Algorithm 
• Input: Two images, intrinsics camera calibration, relative pose 

• Output: Disparity image 

• Algorithm: 
• Rectify images 

• For each pixel in left image:  
• Compute matching cost along epipolar line using patch comparison 

• Determine minimum in matching cost 
• with sub-pixel accuracy, e.g. using linear interpolation 

• Filter outliers 
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Patch Correlation Measures 

• Sum-of-squared differences: 

 

 

• Sum-of-absolute differences: 

 

 

 

• Normalized Cross-Correlation: 

NCC 𝐵, Δ𝑥, Δ𝑦 =
 𝐼𝑙 𝑥, 𝑦 𝐼𝑟(𝑥 + Δ𝑥, 𝑦 + Δ𝑦)𝑥,𝑦 ∈𝐵  

 𝐼𝑙 𝑥, 𝑦 2
𝑥,𝑦 ∈𝐵  𝐼𝑟 𝑥 + Δ𝑥, 𝑦 + Δ𝑦 2

𝑥,𝑦 ∈𝐵

 

Robotic 3D Vision 

Less sensitive to outliers 

Invariant to illumination changes 
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block/window 

If we consider rectified left/right 
images we don‘t have to search along 
the y dimension Δ𝑦 = 0 



Block Size 

Robotic 3D Vision 

• Common choices are 5x5, 11x11, … 

• Smaller neighborhood: more details 

• Larger neighborhood: less noise 

• Suppress pixels with low confidence (f.e. check ratio best match 
vs. second best match, examine local behavior of matching 
cost, etc.) 

 

Images: R. Szeliski Dr. Niclas Zeller, Artisense GmbH 26 

3x3 block-size 20x20 block-size 



Behavior of the Correspondence 
Measure 

Robotic 3D Vision 

Images: Pinies et al., 2015 

Matching cost 

x 
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Behavior of the Correspondence 
Measure 

Robotic 3D Vision 

Images: Pinies et al., 2015 

Matching cost 

x 
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Challenges for Dense Correspondence 
Search 

Robotic 3D Vision 

• Corresponding patches may differ ! 

Image Noise 
(Camera-related) 

Images: C. Gava 
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Challenges for Dense Correspondence 
Search 

Robotic 3D Vision 

• Corresponding patches may differ ! 

Perspective Distortion 
(Viewpoint-related) 

Images: R. Szeliski 
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Challenges for Dense Correspondence 
Search 

Robotic 3D Vision 

• Corresponding patches may differ ! 

Occlusions 
(Viewpoint-related) 

Images: Middlebury benchmark 
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Challenges for Dense Correspondence 
Search 

Robotic 3D Vision 

• Corresponding patches may differ ! 

Specular Reflections 
(Viewpoint-related) 

Images: Weinmann et al., ICCV 2013 
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Challenges for Dense Correspondence 
Search 

Robotic 3D Vision 

• Correspondence can be ambiguous ! 

Low Texture 
(Scene-related) 

Images: Pinies et al., 2015 
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Challenges for Dense Correspondence 
Search 

Robotic 3D Vision 

• Correspondence can be ambiguous ! 

Repetitive Structure/Texture 
(Scene-related) 
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Challenges for Dense Correspondence 
Search 

Robotic 3D Vision 

• Corresponding patches may differ ! 

Motion blur 
(Scene-related) 

Images: C. Gava 
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Dense Depth from Multiple Views 

Robotic 3D Vision 

• Straightforward approach: extend two-view matching cost to 
sum over matching costs of an image towards multiple images 

 

 

 

Slide adapted from R. Szeliski 

Matching 

cost 

depth 
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Dense Depth from Multiple Views 

Robotic 3D Vision 

• Straightforward approach: extend two-view matching cost to sum 
over matching costs of an image towards multiple images 
 

• In general for multiple views images cannot be rectified 
anymore 
 

• Disparity to depth relation is 
different for each image pair 
 

• Matching cost is defined 
as a function of depth 
(or inv. depth) 
 
 

 

Slide adapted from R. Szeliski 

Matching 

cost 

depth 
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Disparity Space Image / Cost Volumes 

Robotic 3D Vision 

• Sum of matching costs between 
reference and k images for discrete 
depth hypotheses in each pixel 

 

 

• Multi-view: inv. depth, „cost volume“  
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inv. 
depth 

Image from Newcombe et al., 2011 



Multi-View Correspondence Measure 

Robotic 3D Vision 

Images: R. Newcombe, 2014 
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Per-Pixel Max-Likelihood Solution 

Robotic 3D Vision 

• Simply choosing the depth with best matching cost at each 
pixel may not provide a good solution 

 

 

 

 

 

 

 

 

• Quite some noise in regions with little texture 
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2 comparison frames 10 comparison frames 30 comparison frames 



Regularization 

Robotic 3D Vision 

• Neighboring pixels should not be treated independently from 
each others 

 

• How can we incorporate prior knowledge about the observed 
3D structures such as smoothness or planarity? 

 

• Idea: add regularizing prior term to the optimization problem 
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Smoothness Regularizers 

Robotic 3D Vision 

 

• Quadratic regularizers 

 

 

 

 

 

• L1-regularizer 

 

 

 

 

 

Stair- 
casing! 

over- 
smooth! 

Images: R. Newcombe, 2014 
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(multi-view) 
Stereo depth 

Depth gradient Regularized depth 



Smoothness Regularizers 

Robotic 3D Vision 

• Huber-norm regularizer as a trade-off  
between quadratic and L1 

 

 

 

 

• Optimization is quite complex 

• There exist also discrete approximations 

• E.g. Semi-Global Matching 

Images: R. Newcombe, 2014 
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Effect of Regularization 

Robotic 3D Vision 

Data term: cost volume over L1-norm on photometric residuals 

Regularizer: Huber-norm on inverse depth gradient 
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Images: R. Newcombe et al., 2011 



Active Depth Sensing 

Robotic 3D Vision 

• What can we do about textureless scenes? 

Images: J. Sturm 
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Active Depth Sensing 

Robotic 3D Vision 

• Idea: Project light/texture 

Images: J. Sturm 
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Depth Cameras 

Robotic 3D Vision 

Time-of-Flight Structured Light 

… 

… 
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Structured Light Measurement 
Principle 

Robotic 3D Vision 

• Project speckle pattern using infrared laser and diffraction 
element 

• Measure infrared speckles using infrared camera 

• Measure corresponding RGB image using color camera 

Infrared 
pattern 

projector Color 
camera 

Infrared 
camera 

baseline 

Slide adapted from J. Sturm 
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Structured Light Measurement 
Principle 

Robotic 3D Vision 

• Use known baseline and reference pattern for depth 
measurement 
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Structured Light Measurement 
Principle 

Robotic 3D Vision 

Slide adapted from J. Sturm 

Block 
matching 

(9x9) 

IR reference pattern IR pattern  
in actual scene 

Depth image 
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Time-of-Flight Measurement Principle 

• Idea: emit timed IR pulse and measure its time of return 

 

• Difficult to create pulses and measure time precisely 

Robotic 3D Vision 

Emitter 

Detector 

Timer 

start 

stop 

Slide adapted from N. Navab 

3D 
Surface 
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Time-of-Flight Measurement Principle 

• Idea: emit continous modulated IR wave signal and measure 
phase shift 

 

• Signal periodicity creates phase ambiguities: use multiple 
frequencies 

Robotic 3D Vision 

Emitter 

Detector 

Phase 
meter 

start 

stop 

Slide adapted from N. Navab 

3D 
Surface 

phase shift 
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Active vs. Passive Sensors 

Robotic 3D Vision 

• Active Sensors 

• Surfaces do not need to be textured 

• Bring their own light, also work in low-light scenarios 

• But: Diffuse IR sunlight typically overrides emitted light 

• Difficulties for IR-absorbing or reflective materials 

 

• Passive Sensors (e.g RGB-only) 

• Do not rely on measuring emitted light 

• Are not limited by the resolution of the projection pattern 
 or ToF measurement principle 

• Distance 

• Multi-path noise (ToF) 
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Lessons Learned Today 

Robotic 3D Vision 

• Stereo depth reconstruction from two and multiple views 

• Stereo rectification simplifies correspondence search for two 
views 

• Dense correspondence search using block matching 

• Correspondences can be ambiguous 

• Regularization with priors to help with noisy and ambiguous data 
terms 

 

• Depth cameras 

• Structured light principle 

• Time-of-flight principle 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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