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What We Will Cover Today 

Robotic 3D Vision 

 

• Depth Sensors (leftover from last lecture) 

• Structured light 

• Time-of-flight 

 

• Dense map representations 

• Occupancy maps 

• Signed distance functions 
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Recap: Dense Depth from Two Views 

Robotic 3D Vision 

• So far: triangulation of 
corresponding interest points 
between two images to find 
depth 
 

• How can we obtain depth 
densely for all pixels in an 
image? 
 

• Assume relative pose 
between the camera images 
known 
 

• Assume intrinsic camera 
calibration known 

Image source: Scharstein et al., Middlebury stereo benchmark 
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Recap: Stereo Rectification Example 

Robotic 3D Vision 

Image source: Loop and Zhang, 2001 

rectified 
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Recap: Relation of Disparity and Depth 

Robotic 3D Vision 

• Disparity is inverse proportional to depth: 
• The larger the depth, the smaller the disparity 

• Disparity is proportional to the baseline: 
• The larger the baseline, the larger the disparity 
• Larger baseline means also higher depth accuracy 

 

Similar triangles: 
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Recap: Block Matching Algorithm 
• Input: Two images, intrinsics camera calibration, relative pose 

• Output: Disparity image 

• Algorithm: 
• Rectify images 

• For each pixel in left image:  
• Compute matching cost along epipolar line using patch comparison 

• Determine minimum in matching cost 
• with sub-pixel accuracy, e.g. using linear interpolation 

• Filter outliers 
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Recap: Dense Depth from Multiple 
Views 

Robotic 3D Vision 

• Straightforward approach: extend two-view matching cost to sum 
over matching costs of an image towards multiple images 
 

• In general for multiple views images cannot be rectified 
anymore 
 

• Disparity to depth relation is 
different for each image pair 
 

• Matching cost is defined 
as a function of depth 
(or inv. depth) 
 
 

 

Slide adapted from R. Szeliski 

Matching 

cost 

depth 
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Recap: Multi-View Correspondence 
Measure 

Robotic 3D Vision 

Images: R. Newcombe, 2014 

Dr. Niclas Zeller, Artisense GmbH 8 



Recap: Effect of Regularization 

Robotic 3D Vision 

Data term: cost volume over L1-norm on photometric residuals 

Regularizer: Huber-norm on inverse depth gradient 
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Active Depth Sensing 

Robotic 3D Vision 

• What can we do about textureless scenes? 

Images: J. Sturm 
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Active Depth Sensing 

Robotic 3D Vision 

• Idea: Project light/texture 

Images: J. Sturm 
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Depth Cameras 

Robotic 3D Vision 

Time-of-Flight Structured Light 

… 

… 
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Structured Light Measurement 
Principle 

Robotic 3D Vision 

• Project speckle pattern using infrared laser and diffraction 
element 

• Measure infrared speckles using infrared camera 

• Measure corresponding RGB image using color camera 

Infrared 
pattern 

projector Color 
camera 

Infrared 
camera 

baseline 

Slide adapted from J. Sturm 
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Structured Light Measurement 
Principle 

Robotic 3D Vision 

• Use known baseline and reference pattern for depth 
measurement 
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Structured Light Measurement 
Principle 

Robotic 3D Vision 

Slide adapted from J. Sturm 

Block 
matching 

(9x9) 

IR reference pattern IR pattern  
in actual scene 

Depth image 
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Time-of-Flight Measurement Principle 

• Idea: emit timed IR pulse and measure its time of return 

 

• Difficult to create pulses and measure time precisely 

Robotic 3D Vision 

Emitter 

Detector 

Timer 

start 

stop 

Slide adapted from N. Navab 

3D 
Surface 
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Time-of-Flight Measurement Principle 

• Idea: emit continous modulated IR wave signal and measure 
phase shift 

 

• Signal periodicity creates phase ambiguities: use multiple 
frequencies 

Robotic 3D Vision 

Emitter 

Detector 

Phase 
meter 

start 

stop 

Slide adapted from N. Navab 

3D 
Surface 

phase shift 
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Active vs. Passive Sensors 

Robotic 3D Vision 

• Active Sensors 

• Surfaces do not need to be textured 

• Bring their own light, also work in low-light scenarios 

• But: Diffuse IR sunlight typically overrides emitted light 

• Difficulties for IR-absorbing or reflective materials 

 

• Passive Sensors (e.g RGB-only) 

• Do not rely on measuring emitted light 

• Are not limited by the resolution of the projection pattern 
 or ToF measurement principle 

• Distance 

• Multi-path noise (ToF) 

Dr. Niclas Zeller, Artisense GmbH 18 



Dense 3D Map Representations 

Robotic 3D Vision 

Volumetric Occupancy Maps Volumetric Signed Distance Functions 

Images: Wurm et al., 2010; Newcombe et al., 2011 
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Example Usage of Dense 3D Maps 

Robotic 3D Vision 

Augmented and 
virtual reality 

Robot navigation 
and exploration 

Images: von Stumberg et al., 2016; Newcombe et al., 2011 
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Dense 3D Maps in SLAM 

Robotic 3D Vision 

• Tracking and Mapping approaches 
• Drift accumulates in the map 

 

• Fuse map from dense depth images based on optimized camera 
poses 
• Offline integration after sequence recording 

• Online integration requires map modification when poses change 

• Still an open research topic 

 

• Most common in robotics are implicit, grid based representations 
• E.g. occupancy grid, signed distance functions (SDF) 

 

• Alternatives can be explicit surface representation 
• e.g. meshes 
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Occupancy Grid Maps 

Robotic 3D Vision 

• Idea: Discretize space into grid and represent „occupancy“ of 
each cell  

 

Images: Thrun et al., 2005; Wurm et al., 2010 

2D 

3D 
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Probabilistic Estimation of Occupancy 

Robotic 3D Vision 

• Map                                       is a grid of cells 
 

• Each cell state is modelled as a binary random variable 
                                     which can take on the values occupied or empty 
 

• We obtain (stochastic) measurements                   of the cell states 
 

• We assume the probability of each cell state to be stochastically 
independent from the state of all other cells given the 
measurements 
 
 

 
• This means, we can estimate the occupancy probability in each cell 

individually 
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 Recursive Bayesian Filtering of 
Occupancy 

Robotic 3D Vision 

• Occupancy probability can be estimated recursively 

 

 

 

 

 

• Note the use of the inverse sensor model 

• Log odds ratio simplifies calculations and improves numeric stability 

𝑙 𝑚 = occ 𝑦1:𝑡 = log
𝑝(𝑚 = occ|𝑦1:𝑡)

𝑝(𝑚 = free|𝑦1:𝑡)

= log
𝑝(𝑚 = occ|𝑦1:𝑡)

1 − 𝑝(𝑚 = occ|𝑦1:𝑡)
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 Recursive Bayesian Filtering of 
Occupancy 

Robotic 3D Vision 

• Ratio of probabilities 

𝑝(𝑚 = occ|𝑦1:𝑡)

𝑝(𝑚 = free|𝑦1:𝑡)
=

𝑝(𝑚 = occ|𝑦1:𝑡)

1 − 𝑝(𝑚 = occ|𝑦1:𝑡)
 

=

𝑝 𝑚 = occ 𝑦𝑡 𝑝 𝑦𝑡 𝑝 𝑚 = occ 𝑦1:𝑡−1

𝑝 𝑚 = occ 𝑝(𝑦𝑡|𝑦1:𝑡−1)

𝑝 𝑚 = free 𝑦𝑡 𝑝 𝑦𝑡 𝑝 𝑚 = free 𝑦1:𝑡−1

𝑝 𝑚 = free 𝑝(𝑦𝑡|𝑦1:𝑡−1)

 

=
𝑝 𝑚 = occ 𝑦𝑡
𝑝 𝑚 = free 𝑦𝑡

⋅
𝑝 𝑚 = free

𝑝 𝑚 = occ
⋅
𝑝 𝑚 = occ 𝑦1:𝑡−1

𝑝 𝑚 = free 𝑦1:𝑡−1
 

=
𝑝 𝑚 = occ 𝑦𝑡

1 − 𝑝 𝑚 = occ 𝑦𝑡
⋅
1 − 𝑝 𝑚 = occ

𝑝 𝑚 = occ
⋅

𝑝 𝑚 = occ 𝑦1:𝑡−1

1 − 𝑝 𝑚 = occ 𝑦1:𝑡−1
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 Recursive Bayesian Filtering of 
Occupancy 

Robotic 3D Vision 
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term involving current 
measurement 

prior previous 
estimate 



 Inverse Sensor Model 

Robotic 3D Vision 

• Typical inverse sensor model for range sensors 

 

Image: C. Stachniss 
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 Inverse Sensor Model 

Robotic 3D Vision 

• Typical inverse sensor model for range sensors 

 

Image: C. Stachniss, 2006 
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measured 
distance 
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Example: 2D Mapping with Sonar 
Sensors 

Robotic 3D Vision 

Image: Thrun et al., 2005 
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Example: 2D Mapping with Sonar 
Sensors 

Robotic 3D Vision 

Image: Thrun et al., 2005 
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Memory Consumption 

• 2D floor map of a 40m x 40m building at 0.05m resolution allocates 

 

 

 

 

 

• 3D volumetric map with size 40x40x40m at 0.05m resolution needs 

 

 

 

• Memory consumption quickly gets huge! 

• Likely large volumes will be empty! 
(unobserved) 

• What can we do? 
Robotic 3D Vision 

Images: Thrun et al., 2005; Wurm et al., 2010 

cells (5.12 MB at double precision) 

cells (4.096 GB at double precision) 
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3D Occupancy Maps in Octrees 

Robotic 3D Vision 

Images: Wurm et al., 2010 

• Only allocate observed voxels 

• Recursively subdivide map volume: multi-resolution 
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Example: OctoMap & RGB-D SLAM 

Robotic 3D Vision 

Endres et al., 3D Mapping with RGB-D Cameras, TRO, 2014  
Hornung et al., OctoMap, Autonomous Robots, 2013 
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https://www.youtube.com/watch?v=9f32FmbtHCs 

 

https://www.youtube.com/watch?v=9f32FmbtHCs
https://www.youtube.com/watch?v=9f32FmbtHCs


Signed Distance Function (SDF) 

Robotic 3D Vision 

• Occupancy grid maps estimate occupancy of voxels 
• Surface only coarsely approximated 

 

 

 

• Idea:  
• Instead of occupancy, store the distance from the surface in the grid 

cells  

• Represent inside/outside the object using the sign 

 

 

 

 

• We can find the zero-level 
through interpolation! 

 

 
 

 

 

0 0 1 0.5 0.5 0.5 

+ 
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zero- 
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SDF Approach 

Robotic 3D Vision 
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SDF Approach 

Robotic 3D Vision Dr. Niclas Zeller, Artisense GmbH 36 

• Define a function  
 
 
with value < 0 outside and 
value > 0 inside object  

 

 

 

 

 

 

 



SDF Approach 

Robotic 3D Vision 

• Define a function  
 
 
with value < 0 outside and 
value > 0 inside object  

 

 

• Extract zero-level set 
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SDF from Point Sets 

Robotic 3D Vision 

• Distance to points not 
sufficient 

 

• Approximate surface locally 
linear: point and normal 

 

• Determine closest distance to 
points along normals 

 

• Inside/outside from normal 
direction 

 

• Smooth approximation 
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SDFs for 3D Map Representation 

Robotic 3D Vision 

Images: Bylow et al., 2013; Newcombe et al., 2011 
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Projective SDFs from Depth Images 

• Given: Depth images, camera intrinsics, camera poses 

• The depth images observe distance of  
camera view point to surface 

• Approximate closest distance from  
surface with projective distance 

• Further approximation: use distance  
along optical axis, i.e. depth 

 

• Estimate weighted average of observed distances to each voxel 

Robotic 3D Vision 

Images: Bylow et al., 2013; Izadi et al., 2011 

optical 
axis 

projective distance 

SDF 
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Further Insights 

• Typically, noise cancels out over multiple measurements 

 

• Truncated signed distance functions (TSDF) 

• In practice , one often limits the integration range to a narrow 
band around the zero level-set to increase efficiency and allow 
for thin objects. The signed distance function is then called 
truncated SDF (TSDF). 

 

• The surface corresponds to the zero-level set  

• To generate a depth image from a novel view, it can be efficiently 
extracted using raycasting 

• A triangular mesh can be extracted using the Marching Cubes 
algorithm 
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Raycasting 

• For each pixel in the novel view, cast a ray to find the first zero-
crossing 
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Voxel Hashing for TSDFs 

• Memory consumption of fully allocated volumetric grid 
representations of TSDFs also is cubic in environment size and 
inverse cell size 

 

• How to scale TSDF maps to larger environments at high 
resolution? 

 

• Only allocate voxels close to the 
updated narrow band along 
the surface 

 

• Index voxels through hashing 
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Images: Niessner et al., 2013 



 

 

Lessons Learned Today 

Robotic 3D Vision 

• Dense 3D map representations useful for augmented / virtual reality 
and robot navigation and exploration 

 

• 3D occupancy grid maps 
• Implicit volumetric surface representation: occupancy probability in grid 

cells 
• Recursive Bayesian estimation using log-odds filter and inverse sensor 

model  
 

• 3D truncated signed distance functions (TSDFs) 
• Implicit volumetric surface representation: distance to surface in grid 

cells 
• Recursive weighted average of distance measurements to surface 

 

• Improve memory efficiency of volumetric representations through 
octrees and voxel hashing 
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Further Reading 

Robotic 3D Vision 

• Probabilistic Robotics textbook 

 

 

 

 

 

 

• Publications: 
• Curless and Levoy, A Volumetric Method for Building Complex Models from Range Images, Proc. of 

Annual Conf. on Computer Graphics and Interactive Techniques, 1996 

• Newcombe et al., KinectFusion: Real-Time Dense Surface Mapping and Tracking, ISMAR 2011 

• Hornung et al., OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees, 
Autonomous Robots, 2013 

• Nießner et al., Real-time 3D Reconstruction at Scale using Voxel Hashing, SIGGRAPH Asia, 2013 

• Keller et al., Real-time 3D Reconstruction in Dynamic Scenes using Point-Based Fusion, 3DV 2013 

• Whelan et al., ElasticFusion: Dense SLAM Without A Pose Graph, RSS 2015 

 

 

 

 

Probabilistic 
Robotics,  
S. Thrun, W. 
Burgard, D. Fox,  
MIT Press, 2005 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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