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What We Will Cover Today 
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• Image formation 

• Pinhole camera 

• Lenses, thin lens equation, pinhole approximation 

• Focus, depth of field, field of view 

• Digital cameras 

• Camera response function and vignetting 

• Pinhole projection and intrinsic camera parameters 

• Lens distortion 

• Multiple view geometry basics 

• Camera extrinsics 

• Epipolar geometry 
 

 

 

 

 



 

 

 

 

 

 

 

 

• Lambertian reflectance: object reflects light with a constant 
brightness at any angle 
 

 

 

 

 

 

How to Capture an Image? 
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How to Capture an Image? 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 4 

 

 

 

 

 

 

 

 

• What if we place an image sensor in front of the object? 

• A pixel receives a mixture of light from visible object points 

• Strong blur! We don’t get a useful image 
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• Let’s place a barrier with an aperture between object and sensor 

• Sensor receives light from a small set of rays 

• Blur is reduced 
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• Observation: Images are still blurry 

• What causes the blur? 

• How can we reduce the blur further? 
 

 

 

 

 

 

How to Capture an Image? 
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Camera obscura (lat., „dark room“)  
illustrated by Gemma Frisius 1545 



How to Capture an Image? 
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• For an ideal pinhole, only a single ray passes per sensor point 

• No blur, but image is dim 
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• The larger the aperture, the more light arrives at sensor 

• The larger the aperture, the blurry the image 
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• How can we increase the collected light for small aperture? 

• We can increase the exposure time! 

• Disadvantage: motion blur increases with exposure time 

• Diffraction limits the aperture size from below 
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• New idea: use a lens to focus rays  
from the same object point on the sensor  

• Rays go straight through the lens’ optical center 

• Central ray  
 

 

 

 

 

 

Converging Lenses 
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• Rays parallel to the optical axis of the lens converge at the focal 
point 

 

 

 

 

 

 

Focal Point 
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• Relationship f, z, e? 
 

 

 

 

 

 

Thin Lens Equation 
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Thin Lens Equation 
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• Thin lens equation: 

 

• Objects satisfying this equation appear in focus on the image 
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• Objects are in focus at a specific distance from the lens along the 
optical axis (i.e. depth) 

• At other distances, objects project to a “blur circle” on image 
 

 

 

 

 

 

Points in Focus 
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• Object out of focus: blur circle has radius 

• Infinitesimally small aperture gives minimal radius 

• “Good image”: adjust camera settings to achieve smaller radius 
than pixel size 

 

 

 

 

 

 

Blur Circle 
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• What happens for                ?  

• For                   , we obtain 

• Image plane needs to be adjusted towards focal plane for focus  
 

 

 

 

 

 

Pinhole Approximation 
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• In the limit (focus at infinity): image plane at focal plane 

• Object point at      projects to image according to   

 

 

 

 

 

Pinhole Approximation 
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• Pinhole approximation holds also for closed focus points 

• However, only in a very limited range (Depth of Field) 

• Pinhole focal length ≠ thin lens focal length 

 

 

 

 

 

Pinhole Approximation 
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• More distant objects appear smaller in the image 

• Ratio between object and image size directly relates to object 
distance 

 

 

 

 

 

 

Perspective Effects 
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• Depth of Field: Depth of nearest 
and farthest object that appear 
acceptably sharp in image 

 

• Lens only precisely focuses on a 
single depth 

 

• Blur circle increases gradually 
with depth 

 

 

 

 

 

 

Depth of Field 
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• The smaller the lens aperture … 

• the larger the depth of field 

• the less light reaches the sensor in a given exposure time 
 

 

 

 

 

 

Depth of Field 
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• Pinhole approximation 

• The smaller f, the larger the maximum view angle 

• focal length together with sensor size defines field of view 

 

 

 
 

 

 

 

 

 

Field of View 
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• Choose lens with appropriate focal length for application 

 
 

 

 

 

 

 

Field of View 
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• Image sensor: array of light-sensitive semi-conducter pixels 

• CCD (charge coupled device) or CMOS (complementary 
metal-oxide-semiconductor) technology 

• Pixel: photosensitive diode 

• converts photons (light energy) to electrons 

• Optical lens mounted on top of image sensor 

 

 

 
 

 

 

 

 

 

Digital Cameras 

Dr. Niclas Zeller, Artisense GmbH Robotic 3D Vision 25 



 

• Digital image is  
an array of D-dim. pixel  
values (RGB values) 

 

 

• We will also denote an image by a  
function  
that maps pixels on a continuous 
image domain        
to their D-dim. values 

 

 

 
 

 

 

 

 

 

Digital Image 
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• For humans luminance is mainly perceived from green color 

• Human visual system much more 
sensitive to high frequencies in 
luminance than in chrominance 

 

• Spectral sensitivity of 
human cone cells 

 

 

 
 

 

 

 

 

 

Color Vision 
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• Bayer pattern (introduced by Bryce Bayer in 1967) 
arranges red, green, blue sensitive pixels 

• Half the pixels measure green 
light spectrum in a checkerboard 
pattern 

• Other pixels are sensitive to 
red or blue alternatingly 

 

 

• “Demosaicing” to obtain RGB-value at each pixel 

• Interpolation of missing pixel colors based on neighboring 
pixels 

 

 

 

 
 

 

 

 

 

 

Bayer Pattern 
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• Lenses may focus light of differing wavelengths to different 
focal points 

• This leads to chromatic aberration (“purple fringing”) 

• Other sources of fringing:  

• Lens flare 

• Different sensitivity to colors 

• Bayer pattern demosaicing algorithm 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Chromatic Aberration and Fringing 
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• Rolling shutter: Line-by-line exposure/readout of pixels 

• Causes distortions of objects that are in relative motion 

• Global shutter: All pixels are exposed/read out at the same 
time 

   

 

 

 
 

 

 

 

 

 

Global vs. Rolling Shutter 
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• The objects in the scene radiate light which is focused by 
the lens onto the image sensor 

 

• The pixels of the sensor observe an irradiance              
for an exposure time  

 

• The camera electronics translates the  
accumulated irradiance into intensity  
values according to a non-linear camera  
response function   

 

• The measured intensity is 

 

 
 

 

 

 

 

 

Camera Response Function 
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example inv. 



• Lenses gradually focus more light at 
the center of the image than at the 
image borders 

• The image appears darker towards 
the borders  

• Also called “lens attenuation” 

• Lense vignetting can be modelled as 
a map 

 

• Intensity measurement model  

 

 

 

 

 
 

 

 

 

 

 

Vignetting 
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Robotic 3D Vision 

 

• Point 

 

 

• Augmented 
vector 

 
  

• Homogeneous 
coordinates 

2D 3D 
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Geometric Point Primitives 



Robotic 3D Vision 

                  𝐶  
(camera matrix) 

world coordinates 
image pixel coordinates 
focal length 
camera center 
(principal point) 

              𝑦   
(normalized image coordinates) 
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Pinhole Camera Model 
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Pinhole Camera Model 
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Lens Distortion 
 

• Lens imperfections cause 
radial distortion of image 

• Deviations stronger towards  
the image borders 

• Typically compensated using  
a low-order polynomial, 
for example, 

 

 

 

• There are also more complex/complete distortion models 
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Further Readings 
• Further readings on image formation and camera models 

Computer Vision – 
Algorithms and 
Applications, R. 
Szeliski, Springer, 
2006 

 

Photogrammetric 
Computer Vision, 
W. Förstner, 
Springer, 2016 

 



What We Will Cover Today 
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• Image formation 

• Pinhole camera 

• Lenses, thin lens equation, pinhole approximation 

• Focus, depth of field, field of view 

• Digital cameras 

• Camera response function and vignetting 

• Camera intrinsics for pinhole camera model 

• Lens distortion 

• Multiple view geometry basics 

• Camera extrinsics 

• Epipolar geometry 
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Camera Extrinsics 
 

 

 

 

 

 

 

 

 

• Euclidean transformations (                      ) between camera 
view poses and world frame  

 
 

 

 

 

 

 



• (Special) Euclidean transformations apply rotation 
                                      and translation 
 
 

 

• Correspond to rigid-body motion 

• Rigid-body motion: preserves distances and angles when 
applied to points on a body 
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(Special) Euclidean Transformations 



• Rotation matrices have a special structure 
 
 
 
 
i.e. orthonormal matrices that preserve distance and angle 
 

• They form a group which we denote as Special Orthogonal Group               
• The group operator is matrix multiplication - associative, but not 

commutative! 
• Inverse and neutral element exist 

 
• 2D rotations only have 1 degree of freedom (DoF), i.e. angle of 

rotation 
• 3D rotations have 3 DoFs, several parametrizations exist such as Euler 

angles and quaternions 
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Special Orthogonal Group SO(n) 



Robotic 3D Vision 

• Straight-forward: Orthonormal matrix 

 

 

 

 

• Pro: Easy to concatenate and invert  

 

 

• Con: Overparametrized (9 parameters for 3 DoF) - problematic 
for optimization 
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3D Rotation Representations – Matrix 



Robotic 3D Vision 

• Euler Angles: 3 consecutive rotations around coordinate axes  
Example: roll-pitch-yaw angles              (X-Y-Z): 
 
 
with 
 
 

 

 

 

 

• 12 possible orderings of rotation axes (f.e. Z-X-Z) 

Roll (X) 

Pitch (Y) 

Yaw (Z) 
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3D Rotation Representations – Euler Angles 



Robotic 3D Vision 

 

 

• Pro: Minimal with 3 parameters 

 

 

 

• Con:  

• Singularities (gimbal lock) 

• concatenation/inversion  
via conversion from/to matrix 

Roll (X) 

Pitch (Y) 

Yaw (Z) 

Loss in DoF 
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3D Rotation Representations – Euler Angles 



Robotic 3D Vision 

• Axis-Angle: Rotate along axis                 by angle             : 
 
 
 
where 

 

 

• Reverse: 

 

• 4 parameters:   

• 3 parameters:  
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3D Rotation Representations – Axis-Angle 



Robotic 3D Vision 

• Pro: minimal representation for 3 parameters 

 

• Con:            

•           has unit norm constraint on     which can be problematic for 
optimization 

• both parametrizations not unique 

• concatenation/inversion via  
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3D Rotation Representations – Axis-Angle 



Robotic 3D Vision 

• Unit Quaternions:                                                , 

 

• Relation to axis-angle representation: 

 

• Axis-angle to quaternion: 

 

 

 

 

• Quaternion to axis-angle: 
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3D Rotation Representations – Quaternion 



Robotic 3D Vision 

• Pros:  
• Unique up to opposing sign 

• Direct rotation of a point: 
 
 

• Direct concatenation of rotations: 
 
 

• Direct inversion of a rotation: 
 
 
with                                      ,                            , 

 

 

• Con: Normalization constraint is problematic for optimization 
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3D Rotation Representations – Quaternion 



• Euclidean transformation matrices have a special structure as 
well: 

 

 

• Translation      has 3 degrees of freedom 

• Rotation                         has 3 degrees of freedom 

 

• They also form a group which we call             . The group 
operator is matrix multiplication: 
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Special Euclidean Group SE(3) 



• Camera centers    ,    and image point              span the epipolar plane  
• The ray from camera center     through point      projects as the epipolar 

line      in image plane  
• The intersections of the line through the camera centers with the image 

planes are called epipoles    , 
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Epipolar Geometry 



• The rays to the 3D point and the baseline t   are coplanar 
 

 

• The essential matrix                        captures the relative camera pose 

• Each point correspondence provides an „epipolar constraint“ 

• 5 correspondences suffice to determine      (simpler: 8-point algorithm) 
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Essential Matrix 



Lessons Learned Today 
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• Image formation 

• Lenses focus light on image sensor 

• Approximation as pinhole camera 

• Camera settings determine focus, depth of field and field of view 

• Focus, depth of field, field of view 

• Digital cameras transfer irradiance to intensity 

• Lenses are imperfect: radial distortion and vignetting 

• 3D rotation representations 

• Recap of basic notions of multiple view geometry 
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Thanks for your attention! 
 

 

 

 

 

 



• These slides have been initially created by Jörg Stückler as 
part of the lecture “Robotic 3D Vision” in winter term 2017/18 
at Technical University of Munich. 

• The slides have been revised by myself (Niclas Zeller) for the 
same lecture held in winter term 2020/21 

• Acknowledgement of all people that contributed images or 
video material has been tried (please kindly inform me if such 
an acknowledgement is missing so it can be added).    
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