

Computer Vision Group Prof. Daniel Cremers

Robotic 3D Vision

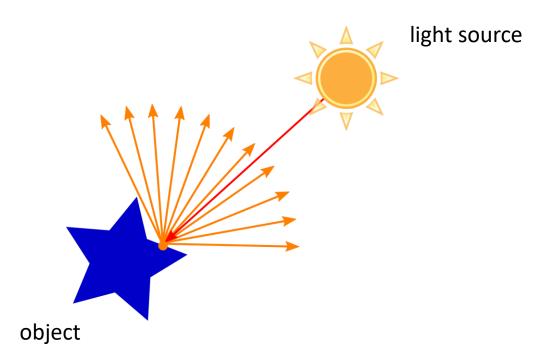
Lecture 2: Image Formation, Multiple View Geometry Basics

WS 2020/21 Dr. Niclas Zeller Artisense GmbH

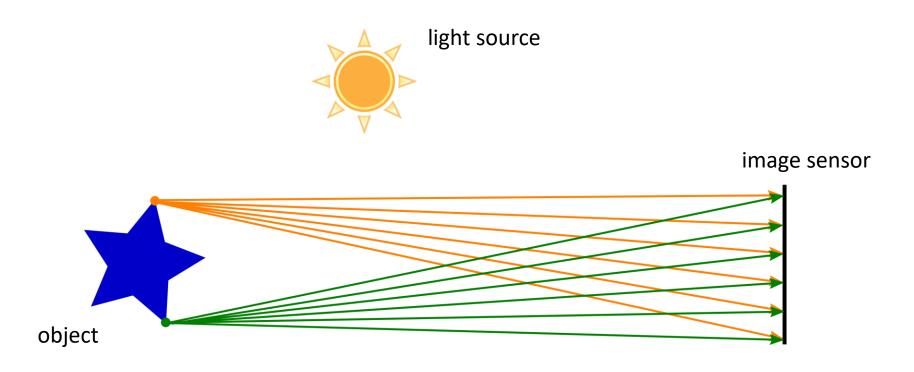
What We Will Cover Today

• Image formation

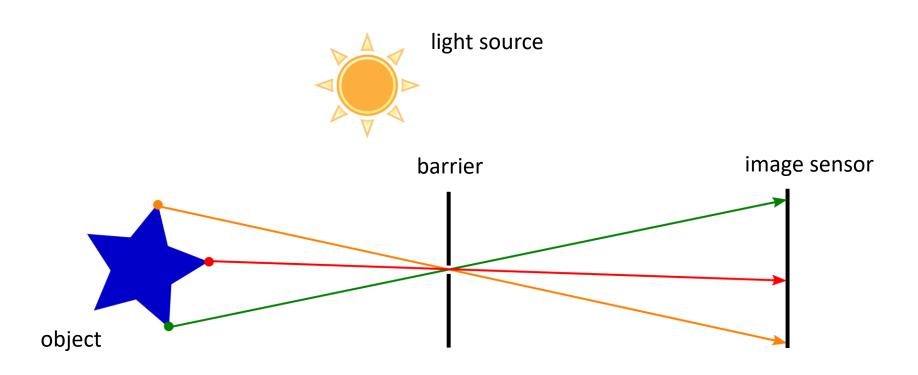
- Pinhole camera
- Lenses, thin lens equation, pinhole approximation
- Focus, depth of field, field of view
- Digital cameras
- Camera response function and vignetting
- Pinhole projection and intrinsic camera parameters
- Lens distortion
- Multiple view geometry basics
 - Camera extrinsics
 - Epipolar geometry



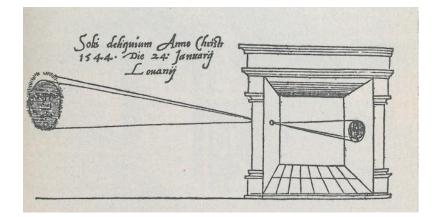
• Lambertian reflectance: object reflects light with a constant brightness at any angle



- What if we place an image sensor in front of the object?
- A pixel receives a mixture of light from visible object points
- Strong blur! We don't get a useful image

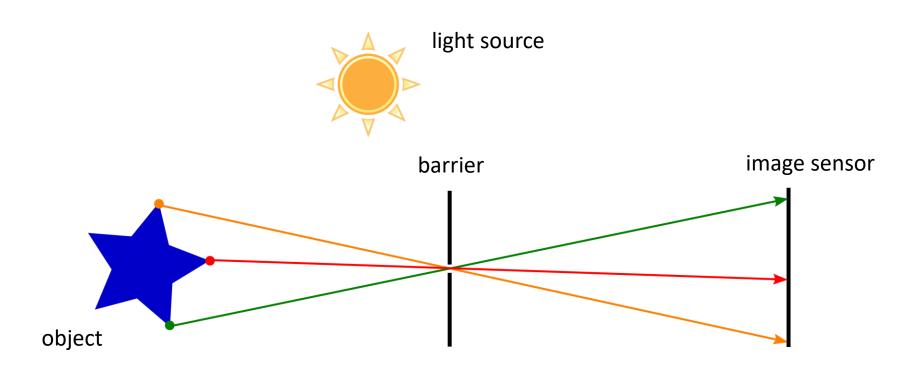


- Let's place a barrier with an aperture between object and sensor
- Sensor receives light from a small set of rays
- Blur is reduced

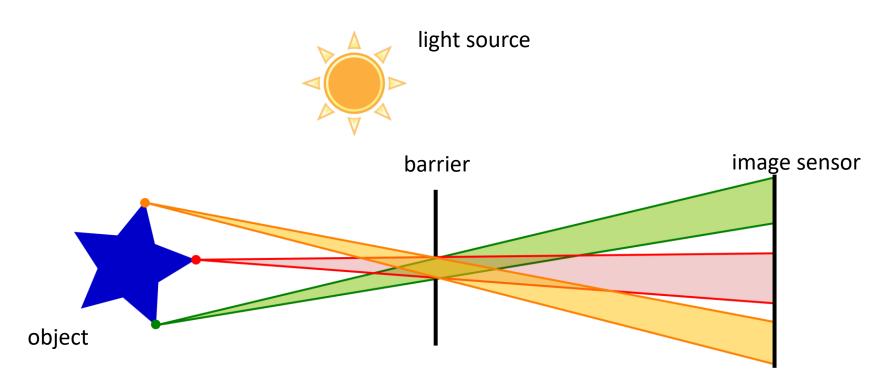


Camera obscura (lat., "dark room") illustrated by Gemma Frisius 1545

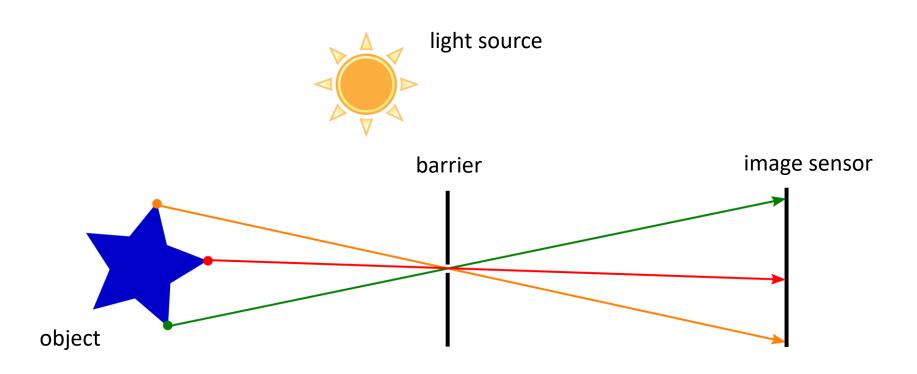
- Observation: Images are still blurry
 - What causes the blur?
 - How can we reduce the blur further?



- For an ideal pinhole, only a single ray passes per sensor point
- No blur, but image is dim



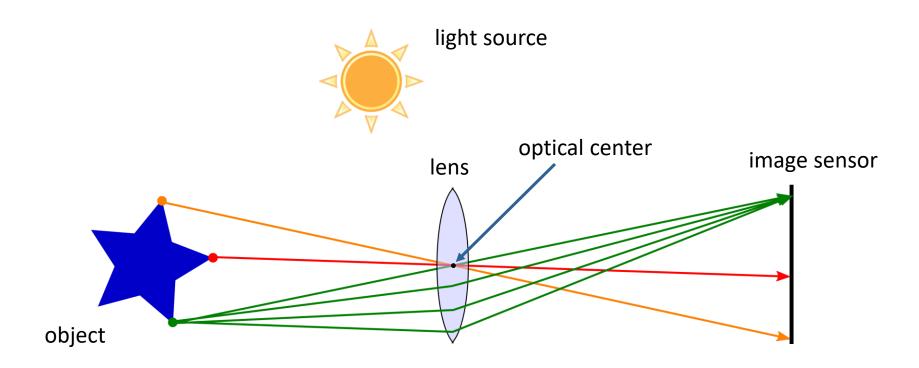
- The larger the aperture, the more light arrives at sensor
- The larger the aperture, the blurry the image



- How can we increase the collected light for small aperture?
 - We can increase the exposure time!
 - Disadvantage: motion blur increases with exposure time
- Diffraction limits the aperture size from below

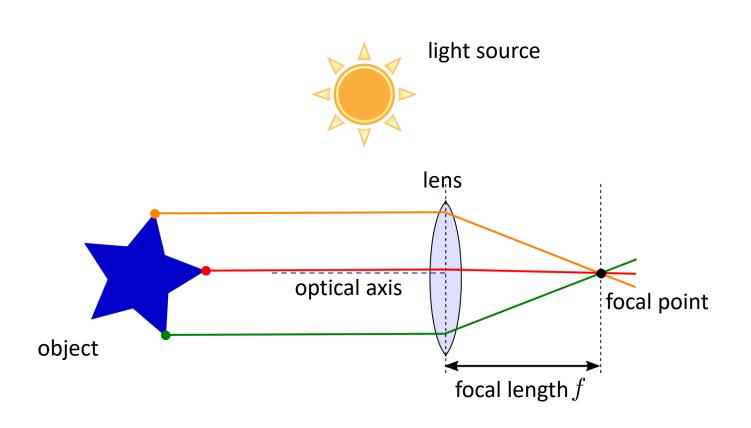
Robotic 3D Vision

Converging Lenses



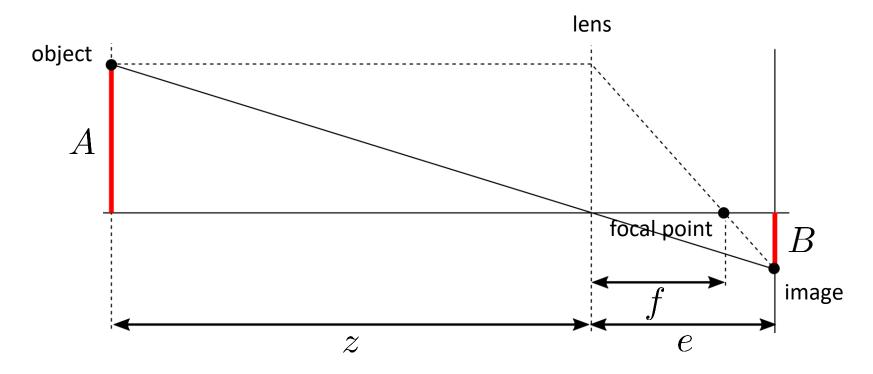
- New idea: use a lens to focus rays from the same object point on the sensor
- Rays go straight through the lens' optical center
 - Central ray

Focal Point



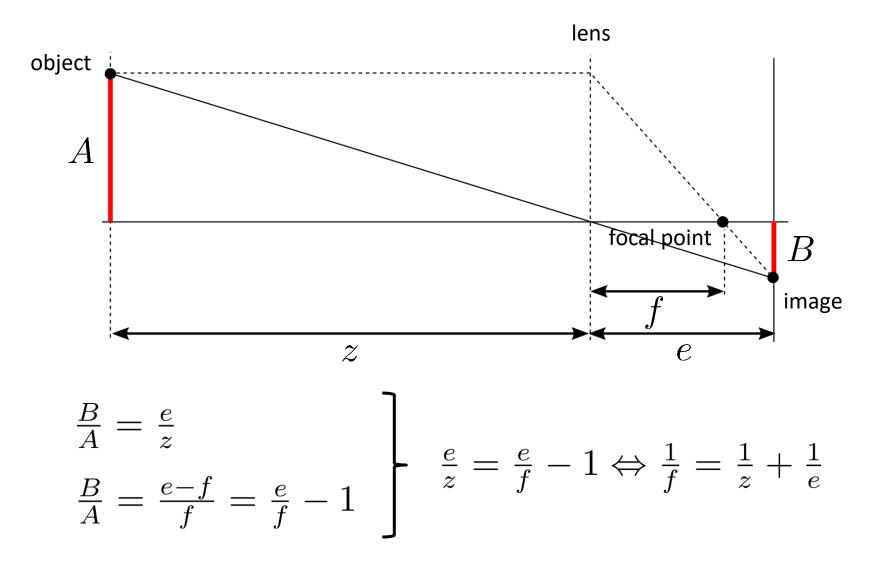
 Rays parallel to the optical axis of the lens converge at the focal point

Thin Lens Equation

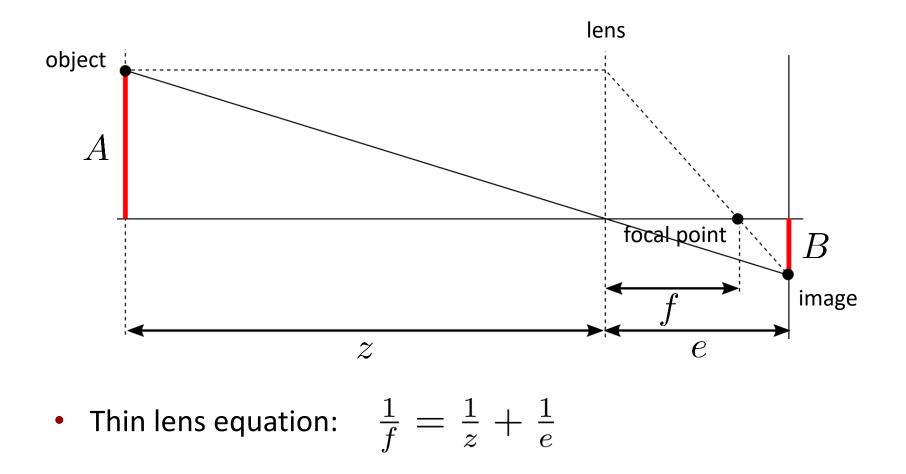


• Relationship f, z, e?

Thin Lens Equation

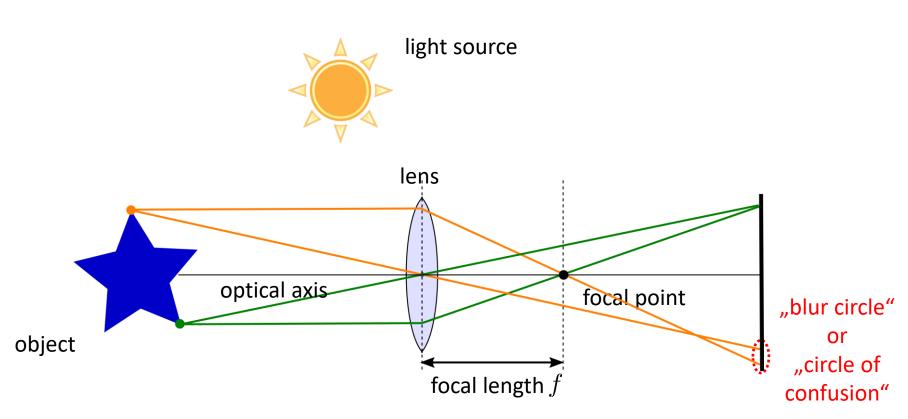


Thin Lens Equation



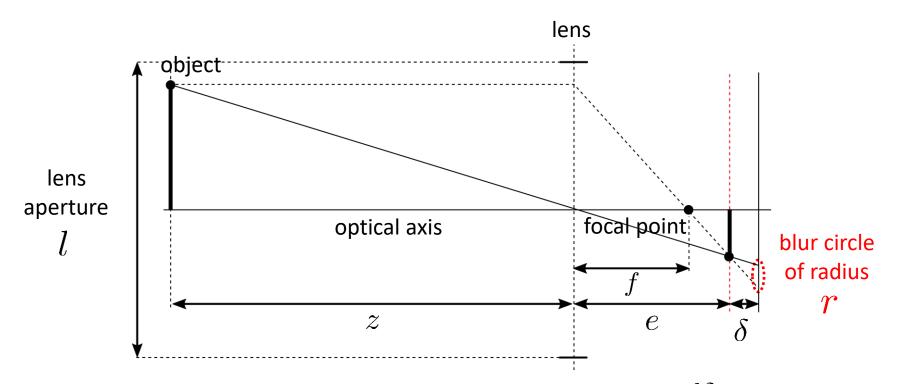
• Objects satisfying this equation appear in focus on the image

Points in Focus



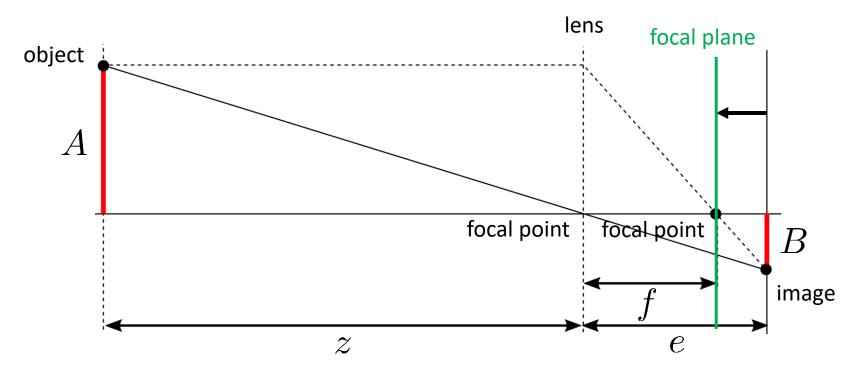
- Objects are in focus at a specific distance from the lens along the optical axis (i.e. depth)
- At other distances, objects project to a "blur circle" on image

Blur Circle



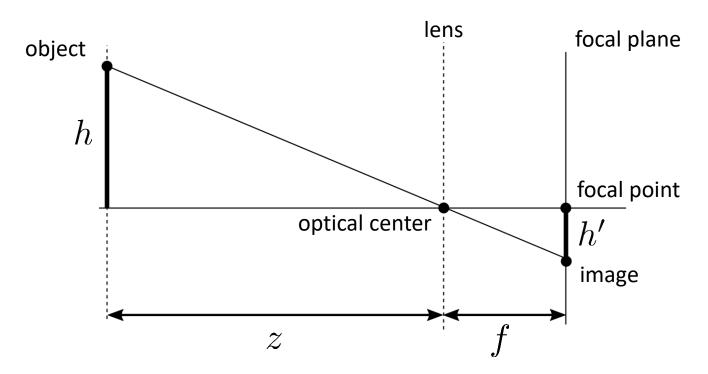
- Object out of focus: blur circle has radius $r = \frac{l\delta}{2e}$
 - Infinitesimally small aperture gives minimal radius
 - "Good image": adjust camera settings to achieve smaller radius than pixel size

Pinhole Approximation



- What happens for $z \gg f$?
 - For $z \to \infty$, we obtain $\frac{1}{f} = \frac{1}{z} + \frac{1}{e} \approx \frac{1}{e} \Rightarrow f \approx e$
 - Image plane needs to be adjusted towards focal plane for focus

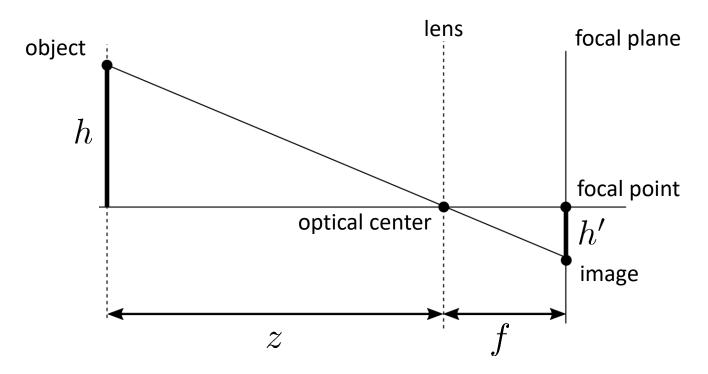
Pinhole Approximation



- In the limit (focus at infinity): image plane at focal plane
- Object point at h projects to image according to

$$h' = f \frac{h}{z}$$

Pinhole Approximation



- Pinhole approximation holds also for closed focus points
 - However, only in a very limited range (Depth of Field)
 - Pinhole focal length ≠ thin lens focal length

Perspective Effects



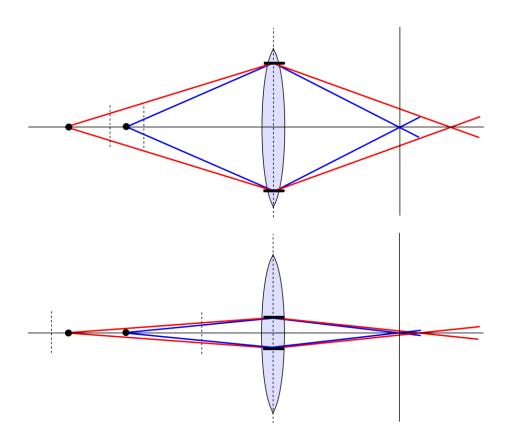
- More distant objects appear smaller in the image
- Ratio between object and image size directly relates to object distance

Depth of Field

- Depth of Field: Depth of nearest and farthest object that appear acceptably sharp in image
- Lens only precisely focuses on a single depth
- Blur circle increases gradually with depth

e scales on a lens barrel perfocal distance opposit	farest
the depth of field will be to infinity.	
e focus at 18 feet,	nearest

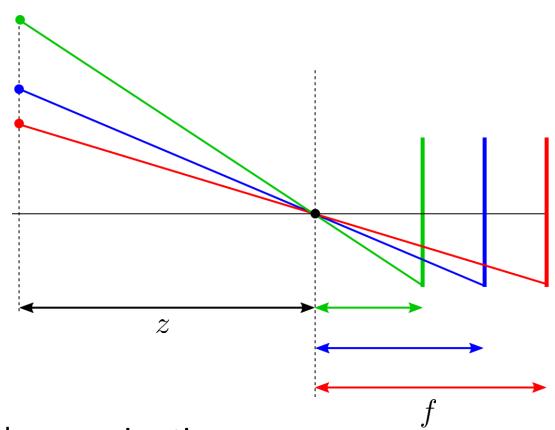
Depth of Field



are using. If you the the depth of field will be to infinity.⊲ For amera has a hyperfe

- The smaller the lens aperture ...
 - the larger the depth of field
 - the less light reaches the sensor in a given exposure time

Field of View



- Pinhole approximation
- The smaller f, the larger the maximum view angle
- focal length together with sensor size defines field of view

Robotic 3D Vision

Field of View

28 mm lens, 65.5° × 46.4°

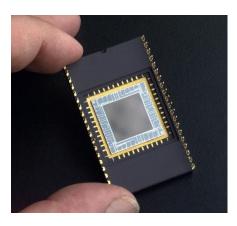
50 mm lens, 39.6° × 27.0°

70 mm lens, 28.9° × 19.5°

210 mm lens, 9.8° × 6.5°

• Choose lens with appropriate focal length for application

Digital Cameras

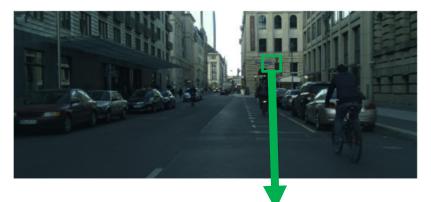


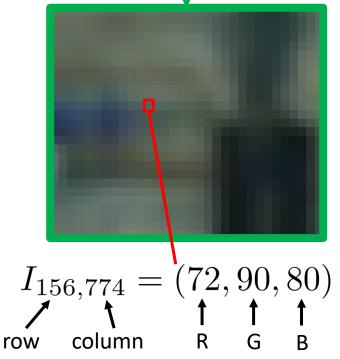
- Image sensor: array of light-sensitive semi-conducter pixels
- CCD (charge coupled device) or CMOS (complementary metal-oxide-semiconductor) technology
- Pixel: photosensitive diode
 - converts photons (light energy) to electrons
- Optical lens mounted on top of image sensor

Digital Image

 Digital image is an array of D-dim. pixel values (RGB values)

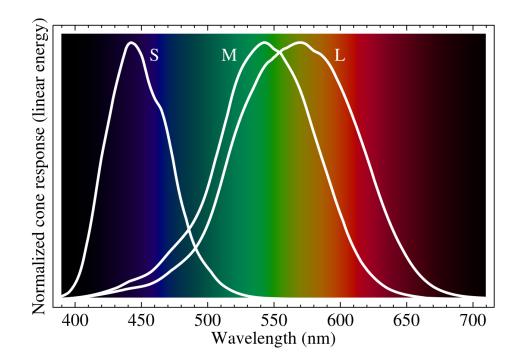
• We will also denote an image by a function $I: \Omega \to \mathbb{R}^D$ that maps pixels on a continuous image domain $\Omega \subset \mathbb{R}^2$ to their D-dim. values





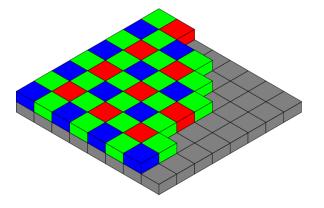
Color Vision

- For humans luminance is mainly perceived from green color
- Human visual system much more sensitive to high frequencies in luminance than in chrominance
- Spectral sensitivity of human cone cells



Bayer Pattern

- Bayer pattern (introduced by Bryce Bayer in 1967) arranges red, green, blue sensitive pixels
 - Half the pixels measure green light spectrum in a checkerboard pattern
 - Other pixels are sensitive to red or blue alternatingly



- "Demosaicing" to obtain RGB-value at each pixel
 - Interpolation of missing pixel colors based on neighboring pixels

Chromatic Aberration and Fringing

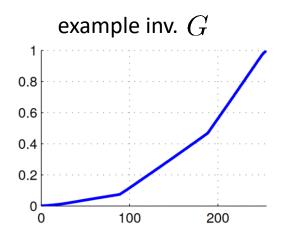
- Lenses may focus light of differing wavelengths to different focal points
- This leads to chromatic aberration ("purple fringing")
- Other sources of fringing:
 - Lens flare
 - Different sensitivity to colors
 - Bayer pattern demosaicing algorithm

Global vs. Rolling Shutter

- Rolling shutter: Line-by-line exposure/readout of pixels
 - Causes distortions of objects that are in relative motion
- Global shutter: All pixels are exposed/read out at the same time

Camera Response Function

- The objects in the scene radiate light which is focused by the lens onto the image sensor
- The pixels of the sensor observe an irradiance $B:\Omega\to\mathbb{R}$ for an exposure time t
- The camera electronics translates the accumulated irradiance into intensity values according to a non-linear camera response function $G:\mathbb{R}\to[0,255]$



• The measured intensity is $I(\mathbf{x}) = G(tB(\mathbf{x}))$

Vignetting

- Lenses gradually focus more light at the center of the image than at the image borders
- The image appears darker towards the borders
- Also called "lens attenuation"
- Lense vignetting can be modelled as a map $V:\Omega\to [0,1]$

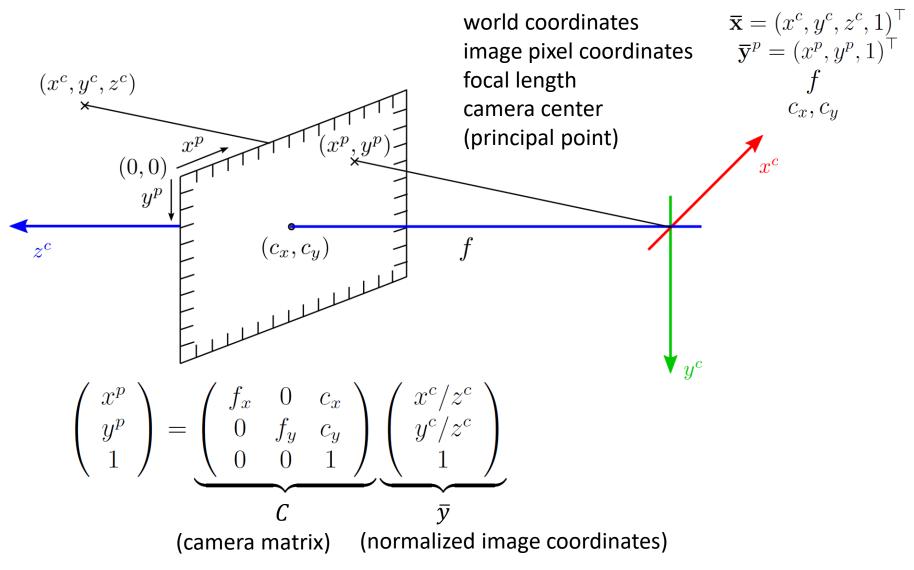
• Intensity measurement model $I(\mathbf{x}) = G(tV(\mathbf{x})B(\mathbf{x}))$

0.9 0.8 $V(\mathbf{x})$ 0.7 0.6 0.5

Geometric Point Primitives

$$2D 3D 3D$$
• Point $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$
• Augmented $\overline{\mathbf{x}} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \in \mathbb{R}^3 \overline{\mathbf{x}} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \in \mathbb{R}^4$
• Homogeneous $\widetilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{w} \end{pmatrix} \in \mathbb{P}^2 \widetilde{\mathbf{x}} = \begin{pmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \\ \tilde{w} \end{pmatrix} \in \mathbb{P}^3$
 $\widetilde{\mathbf{x}} = \widetilde{w}\overline{\mathbf{x}}$

Pinhole Camera Model



Pinhole Camera Model

$$\begin{pmatrix} x^{p} \\ y^{p} \\ 1 \end{pmatrix} = \begin{pmatrix} f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^{c}/z^{c} \\ y^{c}/z^{c} \\ 1 \end{pmatrix}$$

$$z^{c} \begin{pmatrix} x^{p} \\ y^{p} \\ 1 \end{pmatrix} = \begin{pmatrix} f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^{c} \\ y^{c} \\ z^{c} \end{pmatrix}$$

$$\begin{pmatrix} \tilde{x}^p \\ \tilde{y}^p \\ \tilde{w}^p \end{pmatrix} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^c \\ y^c \\ z^c \end{pmatrix}$$
$$\tilde{w}^p = z^c$$

Lens Distortion

- Lens imperfections cause radial distortion of image
- Deviations stronger towards the image borders
- Typically compensated using a low-order polynomial, for example,

$$x_d = x_n (1 + \kappa_1 r_n^2 + \kappa_2 r_n^4)$$

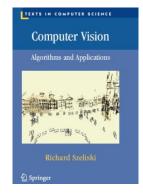
$$y_d = y_n (1 + \kappa_1 r_n^2 + \kappa_2 r_n^4)$$

$$(x_n, y_n)^\top := (x_c/z_c, y_c/z_c)^\top$$
$$r_n = \left\| (x_n, y_n)^\top \right\|_2$$

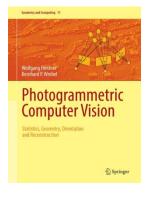
• There are also more complex/complete distortion models

Further Readings

• Further readings on image formation and camera models



Computer Vision – Algorithms and Applications, R. Szeliski, Springer, 2006

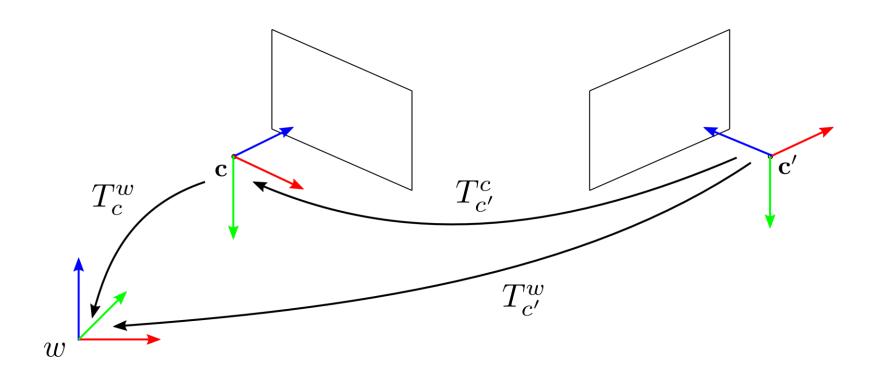


Photogrammetric Computer Vision, W. Förstner, Springer, 2016

What We Will Cover Today

- Image formation
 - Pinhole camera
 - Lenses, thin lens equation, pinhole approximation
 - Focus, depth of field, field of view
 - Digital cameras
 - Camera response function and vignetting
 - Camera intrinsics for pinhole camera model
 - Lens distortion
- Multiple view geometry basics
 - Camera extrinsics
 - Epipolar geometry

Camera Extrinsics



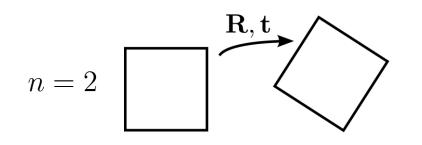
- Euclidean transformations ($T_c^w, T_{c'}^w, T_{c'}^c$) between camera view poses and world frame

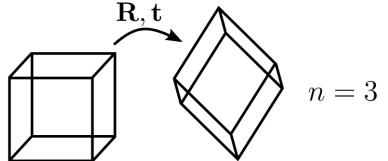
(Special) Euclidean Transformations

• (Special) Euclidean transformations apply rotation $\mathbf{R} \in \mathbf{SO}(n) \subset \mathbb{R}^{n \times n}$ and translation $\mathbf{t} \in \mathbb{R}^n$

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\overline{\mathbf{x}}' = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} \overline{\mathbf{x}}$

- Correspond to rigid-body motion
- Rigid-body motion: preserves distances and angles when applied to points on a body





Special Orthogonal Group SO(n)

• Rotation matrices have a special structure

 $\mathbf{R} \in \mathbf{SO}(n) \subset \mathbb{R}^{n \times n}, \det(\mathbf{R}) = 1, \mathbf{RR}^T = \mathbf{I}$

i.e. orthonormal matrices that preserve distance and angle

- They form a group which we denote as Special Orthogonal Group SO(n)
 - The group operator is matrix multiplication associative, but not commutative!
 - Inverse and neutral element exist
- 2D rotations only have 1 degree of freedom (DoF), i.e. angle of rotation
- 3D rotations have 3 DoFs, several parametrizations exist such as Euler angles and quaternions

3D Rotation Representations – Matrix

• Straight-forward: **Orthonormal matrix**

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

• Pro: Easy to concatenate and invert

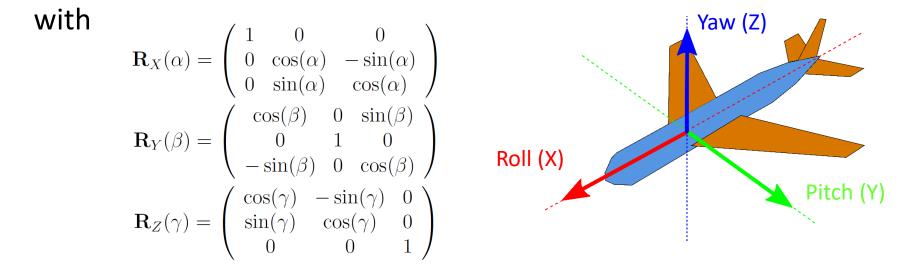
$$\mathbf{R}_{C}^{A} = \mathbf{R}_{B}^{A}\mathbf{R}_{C}^{B} \qquad \qquad \mathbf{R}_{A}^{B} = \left(\mathbf{R}_{B}^{A}\right)^{-1}$$

 Con: Overparametrized (9 parameters for 3 DoF) - problematic for optimization

3D Rotation Representations – Euler Angles

• Euler Angles: 3 consecutive rotations around coordinate axes Example: roll-pitch-yaw angles α, β, γ (X-Y-Z):

 $\mathbf{R}_{XYZ}(\alpha,\beta,\gamma) = \mathbf{R}_Z(\gamma) \, \mathbf{R}_Y(\beta) \, \mathbf{R}_X(\alpha)$

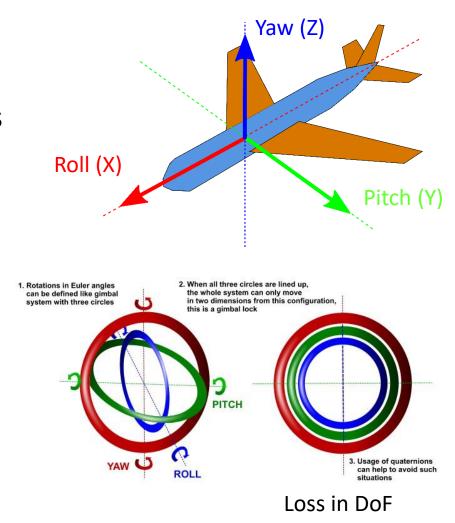


• 12 possible orderings of rotation axes (f.e. Z-X-Z)

3D Rotation Representations – Euler Angles

• Pro: Minimal with 3 parameters

- Con:
 - Singularities (gimbal lock)
 - concatenation/inversion
 via conversion from/to matrix



3D Rotation Representations – Axis-Angle

- Axis-Angle: Rotate along axis $\mathbf{n} \in \mathbb{R}^3$ by angle $\theta \in \mathbb{R}$:
- $\mathbf{R}(\mathbf{n},\theta) = \mathbf{I} + \sin(\theta)\mathbf{\hat{n}} + (1 \cos(\theta))\mathbf{\hat{n}}^2 \quad \|\mathbf{n}\|_2 = 1$ where $\mathbf{\hat{x}} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} \quad \mathbf{\hat{x}y} = \mathbf{x} \times \mathbf{y}$ • Reverse: $\theta = \cos^{-1}\left(\frac{\operatorname{tr}(\mathbf{R}) - 1}{2}\right) \quad \mathbf{n} = \frac{1}{2\sin(\theta)} \begin{pmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{pmatrix}$
- 4 parameters: (n, θ)
- 3 parameters: $\omega = \theta \mathbf{n}$

3D Rotation Representations – Axis-Angle

- Pro: minimal representation for 3 parameters
- Con:
 - (\mathbf{n}, θ) has unit norm constraint on \mathbf{n} which can be problematic for optimization
 - both parametrizations not unique
 - concatenation/inversion via SO(3)

3D Rotation Representations – Quaternion

- Unit Quaternions: $\mathbf{q} = (q_x, q_y, q_z, q_w)^\top \in \mathbb{R}^4$, $\|\mathbf{q}\|_2 = 1$
- Relation to axis-angle representation:
 - Axis-angle to quaternion:

$$\mathbf{q}(\mathbf{n}, \theta) = \left(\mathbf{n}^{\top} \sin\left(\frac{\theta}{2}\right), \cos\left(\frac{\theta}{2}\right)\right)$$
$$\mathbf{n}(\mathbf{q}) = \begin{cases} (q_x, q_y, q_z)^{\top} / \sin(\theta/2), & \theta \neq 0\\ \mathbf{0}, & \theta = 0 \end{cases}$$

• Quaternion to axis-angle: $\theta = 2 \arccos(q_w)$

3D Rotation Representations – Quaternion

- Pros:
 - Unique up to opposing sign q = -q
 - Direct rotation of a point:

 $\mathbf{p}' = \mathbf{q}(\mathbf{R})\mathbf{p}\mathbf{q}(\mathbf{R})^{-1}$

• Direct concatenation of rotations:

 $\mathbf{q}(\mathbf{R}_2\mathbf{R}_1) = \mathbf{q}(\mathbf{R}_2)\mathbf{q}(\mathbf{R}_1)$

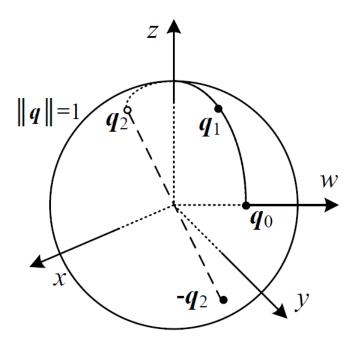
• Direct inversion of a rotation:

$$\mathbf{q}(\mathbf{R}^{-1}) = \mathbf{q}(\mathbf{R})^{-1}$$

with $\mathbf{q}^{-1}=(-\mathbf{q}_{xyz}^{ op},q_w)^{ op}$, $\mathbf{p}=(\mathbf{p}_{xyz}^{ op},0)^{ op}$

 $\mathbf{q}_{1}\mathbf{q}_{2} = (q_{1,w}\mathbf{q}_{2,xyz} + q_{2,w}\mathbf{q}_{1,xyz} + \mathbf{q}_{1,xyz} \times \mathbf{q}_{2,xyz}, q_{1,w}q_{2,w} - \mathbf{q}_{1,xyz}\mathbf{q}_{2,xyz})$

• Con: Normalization constraint is problematic for optimization



Special Euclidean Group SE(3)

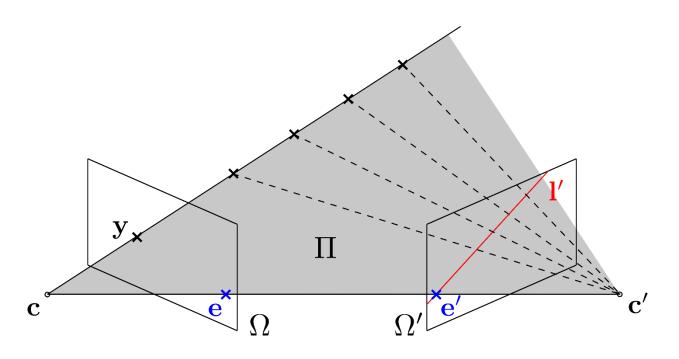
Euclidean transformation matrices have a special structure as well:

$$\mathbf{T} = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} \in \mathbf{SE}(3) \subset \mathbb{R}^{4 \times 4}$$

- Translation $t\,$ has 3 degrees of freedom
- Rotation $\mathbf{R} \in \mathbf{SO}(3)$ has 3 degrees of freedom
- They also form a group which we call SE(3). The group operator is matrix multiplication:

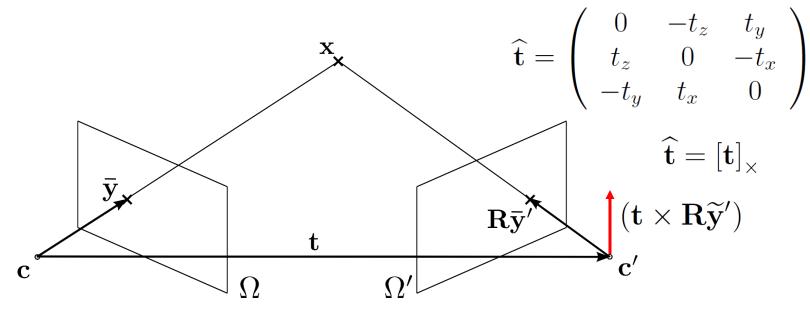
$$\cdot : \mathbf{SE}(3) \times \mathbf{SE}(3) \to \mathbf{SE}(3)$$
$$\mathbf{T}_B^A \cdot \mathbf{T}_C^B \mapsto \mathbf{T}_C^A$$

Epipolar Geometry



- Camera centers ${f c}$, ${f c}'$ and image point ${f y}\in \Omega$ span the epipolar plane Π
- The ray from camera center c through point y projects as the epipolar line l' in image plane Ω'
- The intersections of the line through the camera centers with the image planes are called epipoles $e,\,e^\prime$

Essential Matrix



• The rays to the 3D point and the baseline \mathbf{t} are coplanar $\widetilde{\mathbf{y}}^{\top} (\mathbf{t} \times \mathbf{R} \widetilde{\mathbf{y}}') = 0 \Leftrightarrow \widetilde{\mathbf{y}}^{\top} \widehat{\mathbf{t}} \mathbf{R} \widetilde{\mathbf{y}}' = 0$

- The essential matrix $\, {f E} := \widehat {f t} {f R} \,$ captures the relative camera pose
- Each point correspondence provides an "epipolar constraint"
- 5 correspondences suffice to determine ${f E}$ (simpler: 8-point algorithm)

Lessons Learned Today

- Image formation
 - Lenses focus light on image sensor
 - Approximation as pinhole camera
 - Camera settings determine focus, depth of field and field of view
 - Focus, depth of field, field of view
 - Digital cameras transfer irradiance to intensity
 - Lenses are imperfect: radial distortion and vignetting
- 3D rotation representations
- Recap of basic notions of multiple view geometry

Thanks for your attention!

Slides Information

- These slides have been initially created by Jörg Stückler as part of the lecture "Robotic 3D Vision" in winter term 2017/18 at Technical University of Munich.
- The slides have been revised by myself (Niclas Zeller) for the same lecture held in winter term 2020/21
- Acknowledgement of all people that contributed images or video material has been tried (please kindly inform me if such an acknowledgement is missing so it can be added).