

Robotic 3D Vision

Lecture 2: Image Formation, Multiple View Geometry Basics

WS 2020/21

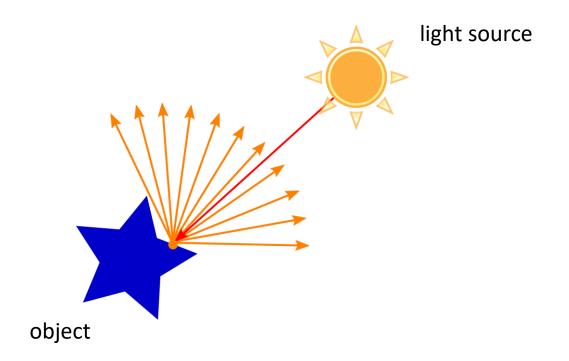
Dr. Niclas Zeller

Artisense GmbH

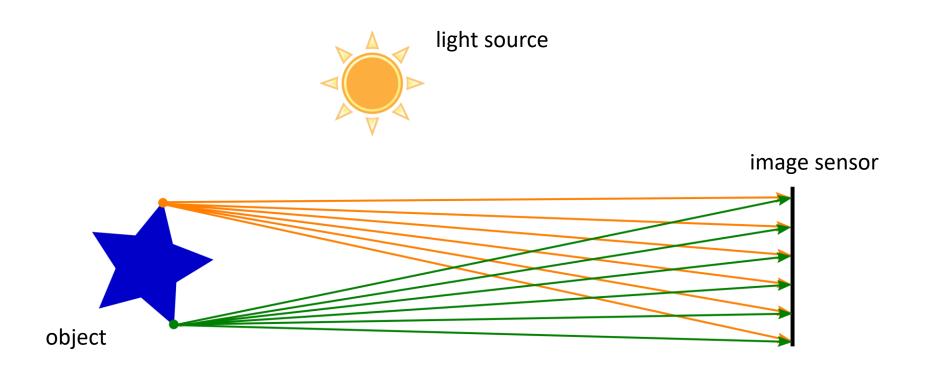
What We Will Cover Today

Image formation

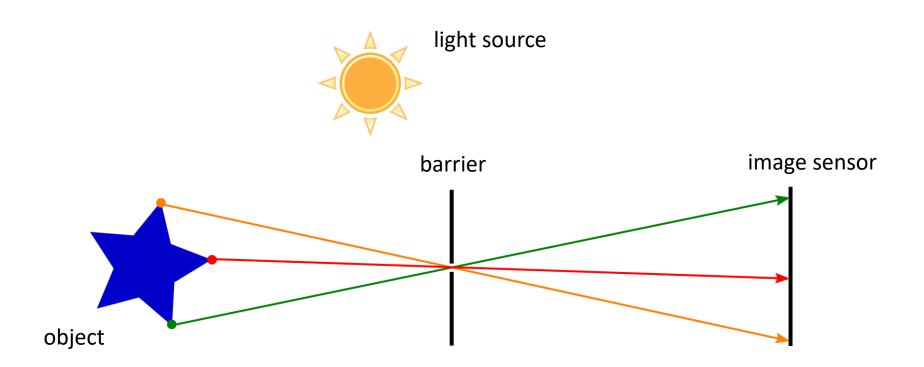
- Pinhole camera
- Lenses, thin lens equation, pinhole approximation
- Focus, depth of field, field of view
- Digital cameras
- Camera response function and vignetting
- Pinhole projection and intrinsic camera parameters
- Lens distortion
- Multiple view geometry basics
 - Camera extrinsics
 - Epipolar geometry



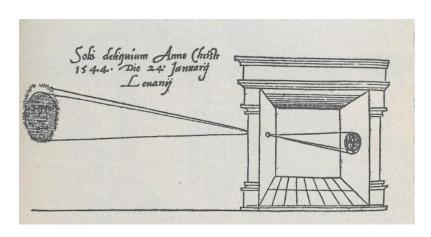
 Lambertian reflectance: object reflects light with a constant brightness at any angle



- What if we place an image sensor in front of the object?
- A pixel receives a mixture of light from visible object points
- Strong blur! We don't get a useful image

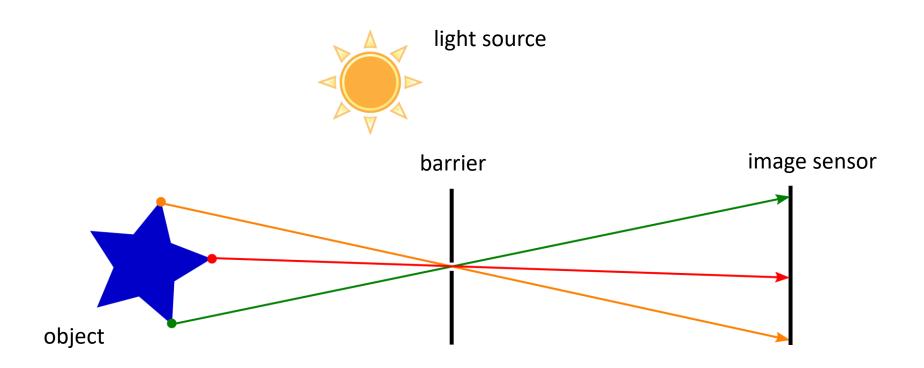


- Let's place a barrier with an aperture between object and sensor
- Sensor receives light from a small set of rays
- Blur is reduced

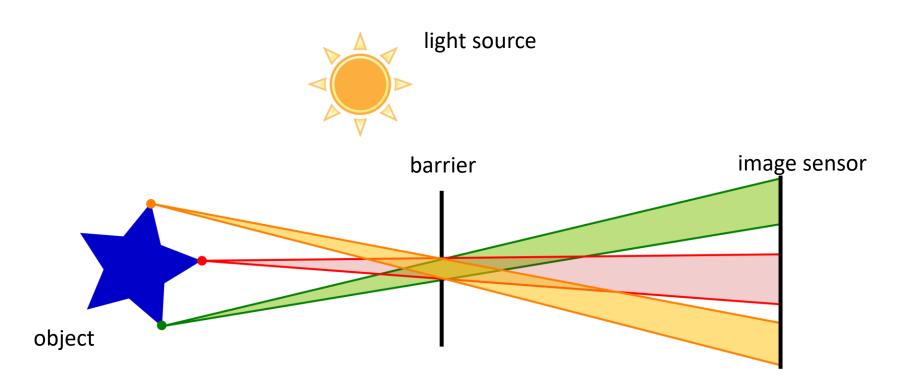


Camera obscura (lat., "dark room") illustrated by Gemma Frisius 1545

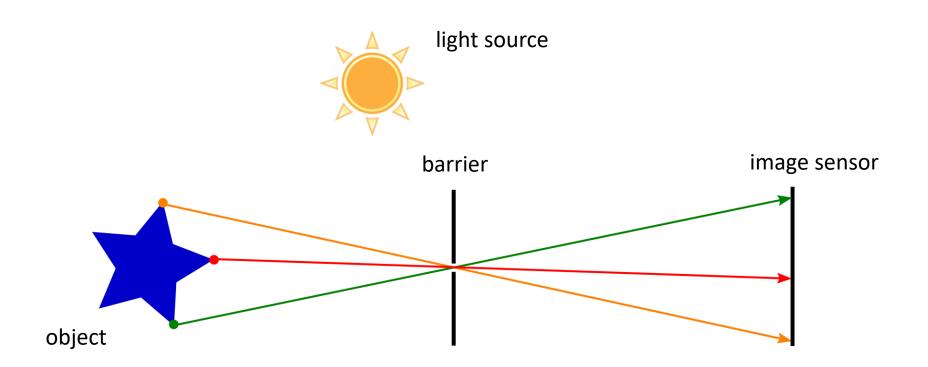
- Observation: Images are still blurry
 - What causes the blur?
 - How can we reduce the blur further?



- For an ideal pinhole, only a single ray passes per sensor point
- No blur, but image is dim

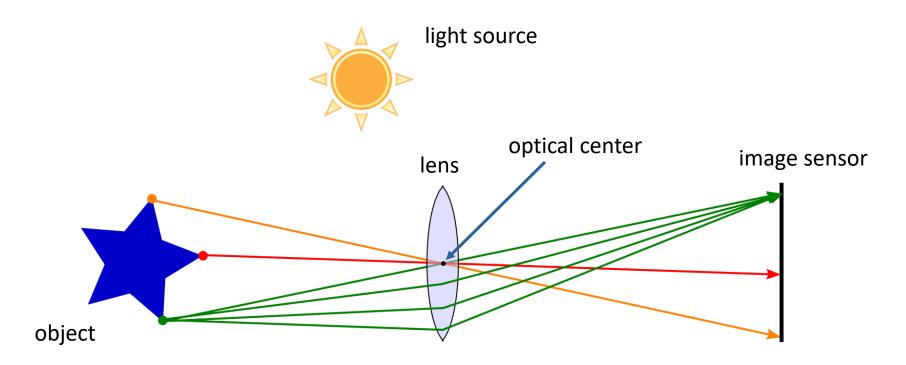


- The larger the aperture, the more light arrives at sensor
- The larger the aperture, the blurry the image



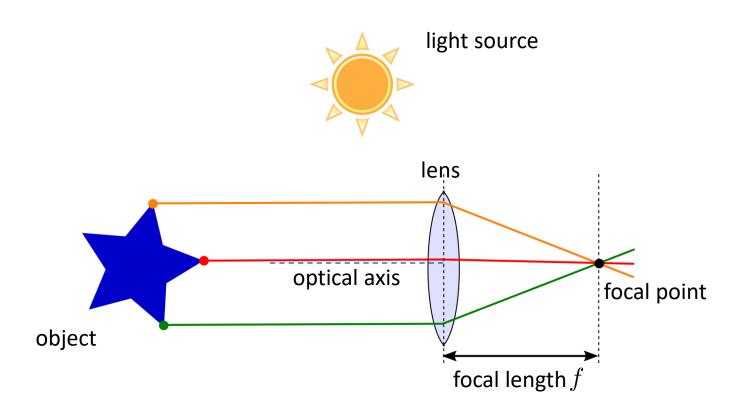
- How can we increase the collected light for small aperture?
 - We can increase the exposure time!
 - Disadvantage: motion blur increases with exposure time
- Diffraction limits the aperture size from below

Converging Lenses



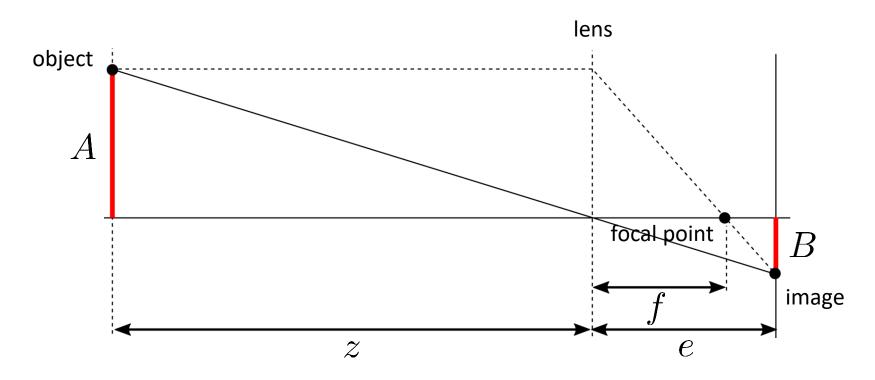
- New idea: use a lens to focus rays from the same object point on the sensor
- Rays go straight through the lens' optical center
 - Central ray

Focal Point



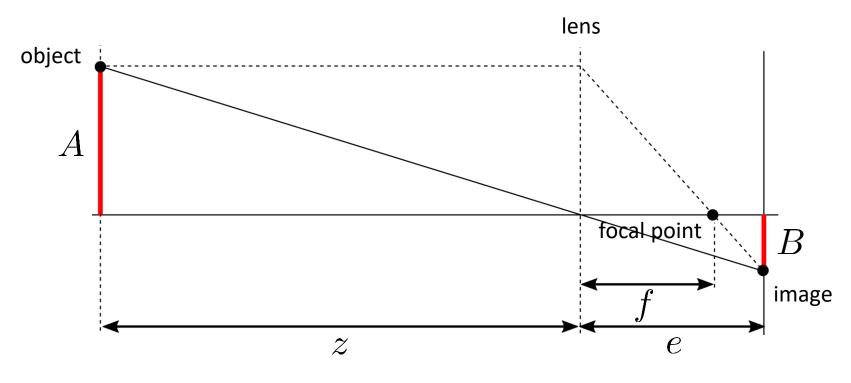
 Rays parallel to the optical axis of the lens converge at the focal point

Thin Lens Equation



Relationship f, z, e?

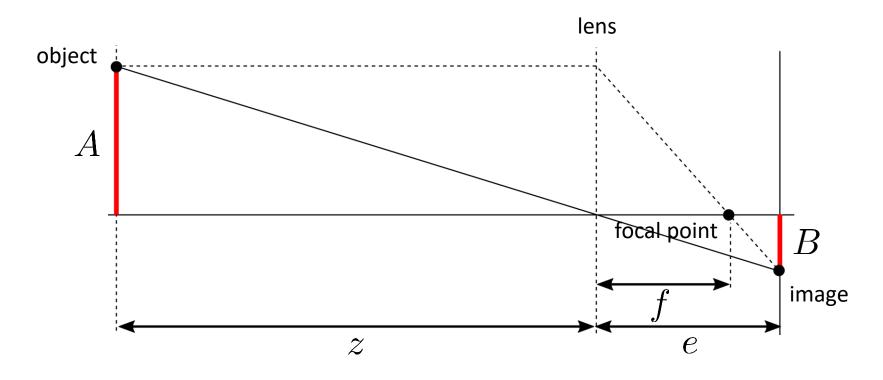
Thin Lens Equation



$$\frac{\frac{B}{A} = \frac{e}{z}}{\frac{B}{A} = \frac{e-f}{f} = \frac{e}{f} - 1}$$

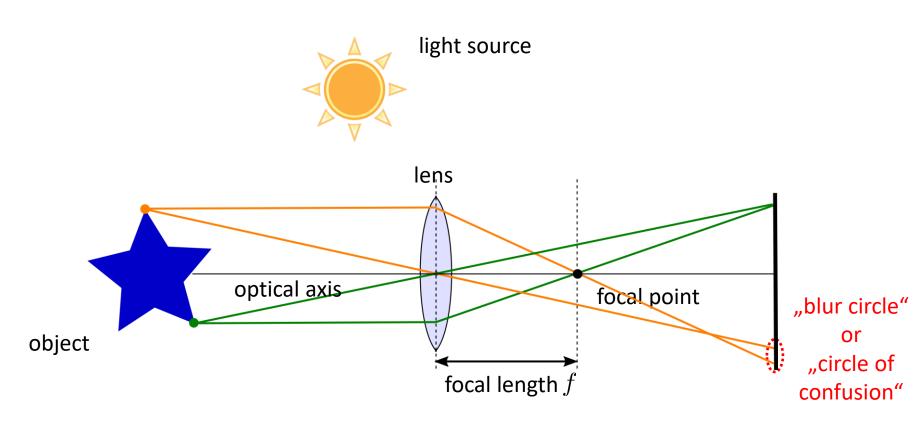
$$\frac{\frac{e}{z} = \frac{e}{f} - 1 \Leftrightarrow \frac{1}{f} = \frac{1}{z} + \frac{1}{e}$$

Thin Lens Equation



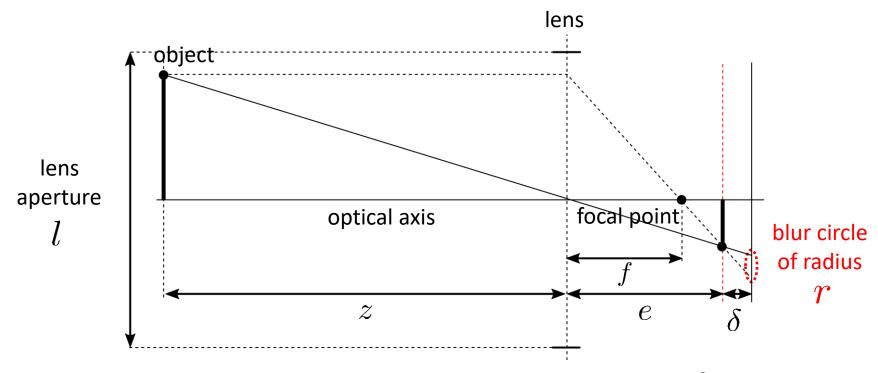
- Thin lens equation: $\frac{1}{f} = \frac{1}{z} + \frac{1}{e}$
- Objects satisfying this equation appear in focus on the image

Points in Focus



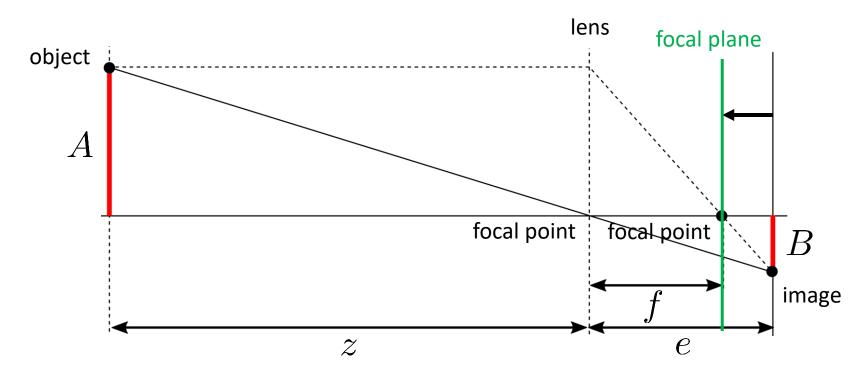
- Objects are in focus at a specific distance from the lens along the optical axis (i.e. depth)
- At other distances, objects project to a "blur circle" on image

Blur Circle



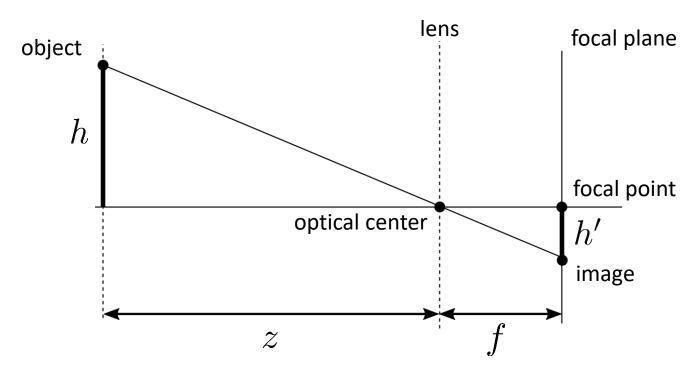
- Object out of focus: blur circle has radius $\,r=rac{l\delta}{2e}\,$
 - Infinitesimally small aperture gives minimal radius
 - "Good image": adjust camera settings to achieve smaller radius than pixel size

Pinhole Approximation



- What happens for $z \gg f$?
 - For $z o \infty$, we obtain $\frac{1}{f} = \frac{1}{z} + \frac{1}{e} pprox \frac{1}{e} \Rightarrow f pprox e$
 - Image plane needs to be adjusted towards focal plane for focus

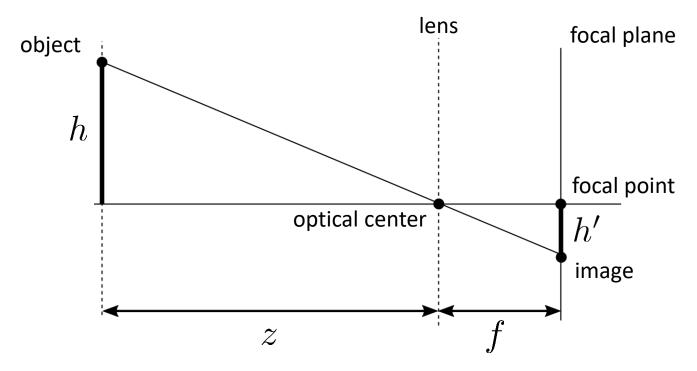
Pinhole Approximation



- In the limit (focus at infinity): image plane at focal plane
- Object point at h projects to image according to

$$h' = f \frac{h}{z}$$

Pinhole Approximation



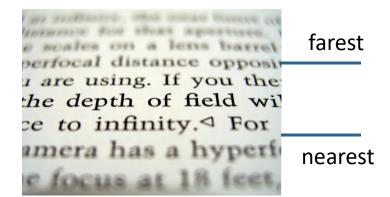
- Pinhole approximation holds also for closed focus points
 - However, only in a very limited range (Depth of Field)
 - Pinhole focal length ≠ thin lens focal length

Perspective Effects

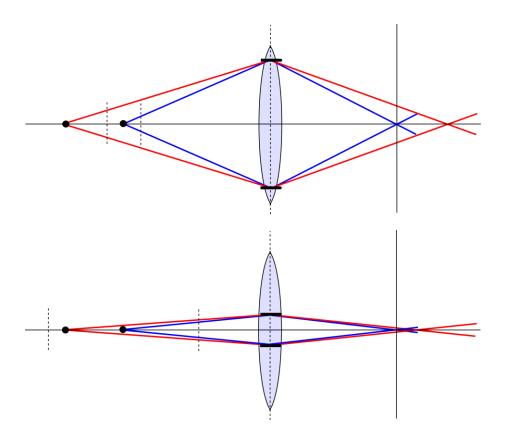
- More distant objects appear smaller in the image
- Ratio between object and image size directly relates to object distance

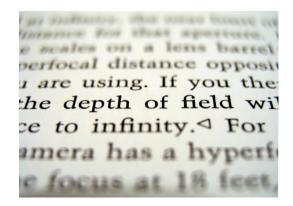
Depth of Field

- Depth of Field: Depth of nearest and farthest object that appear acceptably sharp in image
- Lens only precisely focuses on a single depth
- Blur circle increases gradually with depth



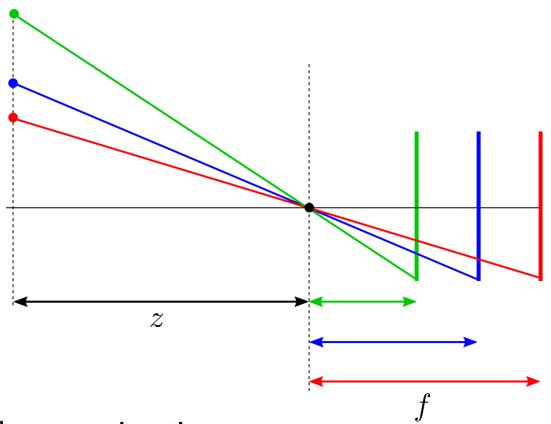
Depth of Field





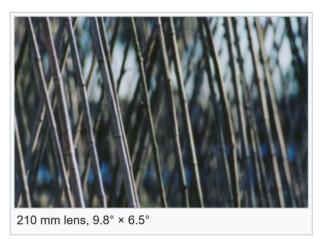
- The smaller the lens aperture ...
 - the larger the depth of field
 - the less light reaches the sensor in a given exposure time

Field of View



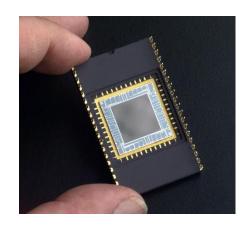
- Pinhole approximation
- The smaller f, the larger the maximum view angle
- focal length together with sensor size defines field of view

Field of View



Choose lens with appropriate focal length for application

Digital Cameras

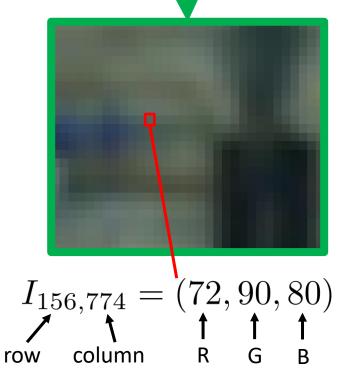


- Image sensor: array of light-sensitive semi-conducter pixels
- CCD (charge coupled device) or CMOS (complementary metal-oxide-semiconductor) technology
- Pixel: photosensitive diode
 - converts photons (light energy) to electrons
- Optical lens mounted on top of image sensor

Digital Image

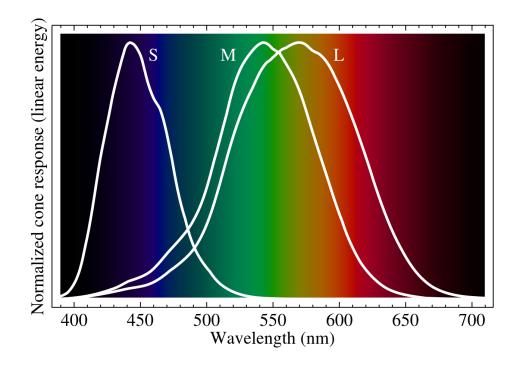
 Digital image is an array of D-dim. pixel values (RGB values)

• We will also denote an image by a function $I:\Omega\to\mathbb{R}^D$ that maps pixels on a continuous image domain $\Omega\subset\mathbb{R}^2$ to their D-dim. values



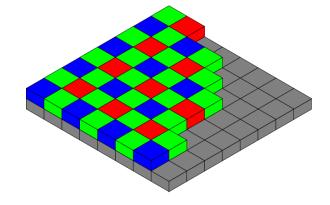
Color Vision

- For humans luminance is mainly perceived from green color
- Human visual system much more sensitive to high frequencies in luminance than in chrominance
- Spectral sensitivity of human cone cells



Bayer Pattern

- Bayer pattern (introduced by Bryce Bayer in 1967) arranges red, green, blue sensitive pixels
 - Half the pixels measure green light spectrum in a checkerboard pattern
 - Other pixels are sensitive to red or blue alternatingly



- "Demosaicing" to obtain RGB-value at each pixel
 - Interpolation of missing pixel colors based on neighboring pixels

Chromatic Aberration and Fringing

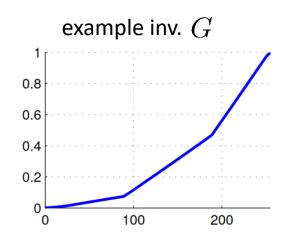
- Lenses may focus light of differing wavelengths to different focal points
- This leads to chromatic aberration ("purple fringing")
- Other sources of fringing:
 - Lens flare
 - Different sensitivity to colors
 - Bayer pattern demosaicing algorithm

Global vs. Rolling Shutter

- Rolling shutter: Line-by-line exposure/readout of pixels
 - Causes distortions of objects that are in relative motion
- Global shutter: All pixels are exposed/read out at the same time

Camera Response Function

- The objects in the scene radiate light which is focused by the lens onto the image sensor
- The pixels of the sensor observe an irradiance $B:\Omega
 ightarrow \mathbb{R}$ for an exposure time t
- The camera electronics translates the accumulated irradiance into intensity values according to a non-linear camera response function $G:\mathbb{R}\to[0,255]$



• The measured intensity is $I(\mathbf{x}) = G(tB(\mathbf{x}))$

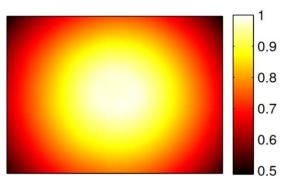
Vignetting

- Lenses gradually focus more light at the center of the image than at the image borders
- The image appears darker towards the borders
- Also called "lens attenuation"
- Lense vignetting can be modelled as a map $V:\Omega \to [0,1]$
- Intensity measurement model

$$I(\mathbf{x}) = G(tV(\mathbf{x})B(\mathbf{x}))$$

uncorrected

corrected



Geometric Point Primitives

2D

3D

Point

$$\mathbf{x} = \left(\begin{array}{c} x \\ y \end{array}\right) \in \mathbb{R}^2$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \qquad \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$

Augmented vector

$$\overline{\mathbf{x}} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

$$\overline{\mathbf{x}} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \in \mathbb{R}^3 \qquad \overline{\mathbf{x}} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \in \mathbb{R}^4$$

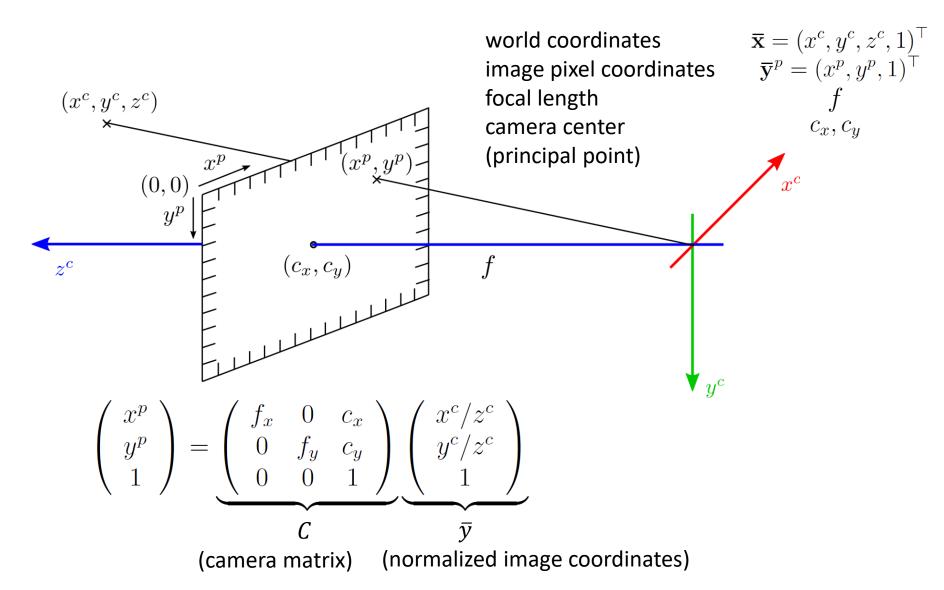
Homogeneous coordinates

$$\widetilde{\mathbf{x}} = \left(egin{array}{c} \widetilde{x} \ \widetilde{y} \ \widetilde{w} \end{array}
ight) \in \mathbb{P}^2$$

$$\widetilde{\mathbf{x}} = \begin{pmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{w} \end{pmatrix} \in \mathbb{P}^2 \qquad \widetilde{\mathbf{x}} = \begin{pmatrix} x \\ \widetilde{y} \\ \widetilde{z} \\ \widetilde{w} \end{pmatrix} \in \mathbb{P}^3$$

$$\widetilde{\mathbf{x}} = \widetilde{w}\overline{\mathbf{x}}$$

Pinhole Camera Model



Pinhole Camera Model

$$\begin{pmatrix} x^p \\ y^p \\ 1 \end{pmatrix} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^c/z^c \\ y^c/z^c \\ 1 \end{pmatrix}$$

$$z^{c} \begin{pmatrix} x^{p} \\ y^{p} \\ 1 \end{pmatrix} = \begin{pmatrix} f_{x} & 0 & c_{x} \\ 0 & f_{y} & c_{y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^{c} \\ y^{c} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \widetilde{x}^p \\ \widetilde{y}^p \\ \widetilde{w}^p \end{pmatrix} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^c \\ y^c \\ 1 \end{pmatrix}$$
$$\widetilde{w}^p = z^c$$

Lens Distortion

- Lens imperfections cause radial distortion of image
- Deviations stronger towards the image borders
- Typically compensated using a low-order polynomial, for example,

$$x_d = x_n(1 + \kappa_1 r_n^2 + \kappa_2 r_n^4)$$

$$y_d = y_n (1 + \kappa_1 r_n^2 + \kappa_2 r_n^4)$$

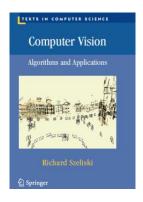
$$(x_n, y_n)^\top := (x_c/z_c, y_c/z_c)^\top$$

$$r_n = \left\| (x_n, y_n)^\top \right\|_2$$

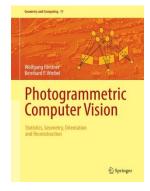
There are also more complex/complete distortion models

Further Readings

Further readings on image formation and camera models



Computer Vision – Algorithms and Applications, R. Szeliski, Springer, 2006

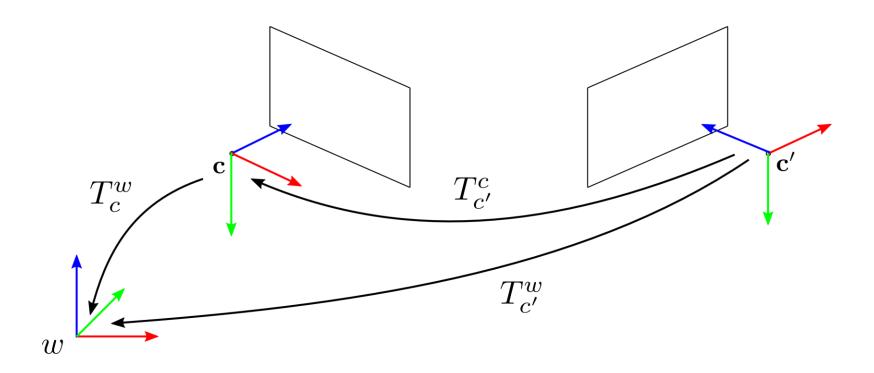


Photogrammetric Computer Vision, W. Förstner, Springer, 2016

What We Will Cover Today

- Image formation
 - Pinhole camera
 - Lenses, thin lens equation, pinhole approximation
 - Focus, depth of field, field of view
 - Digital cameras
 - Camera response function and vignetting
 - Camera intrinsics for pinhole camera model
 - Lens distortion
- Multiple view geometry basics
 - Camera extrinsics
 - Epipolar geometry

Camera Extrinsics



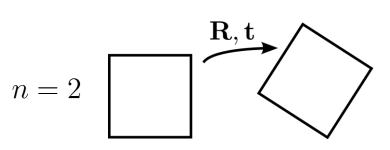
• Euclidean transformations ($T_c^w, T_{c'}^w, T_{c'}^c$) between camera view poses and world frame

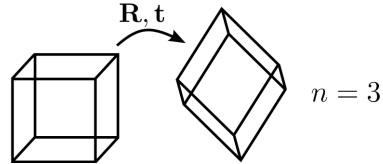
(Special) Euclidean Transformations

• (Special) Euclidean transformations apply rotation $\mathbf{R} \in \mathbf{SO}(n) \subset \mathbb{R}^{n \times n}$ and translation $\mathbf{t} \in \mathbb{R}^n$

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$
 $\overline{\mathbf{x}}' = \left(egin{array}{cc} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{array}
ight) \overline{\mathbf{x}}$

- Correspond to rigid-body motion
- Rigid-body motion: preserves distances and angles when applied to points on a body





Special Orthogonal Group SO(n)

Rotation matrices have a special structure

$$\mathbf{R} \in \mathbf{SO}(n) \subset \mathbb{R}^{n \times n}, \det(\mathbf{R}) = 1, \mathbf{R}\mathbf{R}^T = \mathbf{I}$$

i.e. orthonormal matrices that preserve distance and angle

- They form a group which we denote as Special Orthogonal Group $\mathbf{SO}(n)$
 - The group operator is matrix multiplication associative, but not commutative!
 - Inverse and neutral element exist
- 2D rotations only have 1 degree of freedom (DoF), i.e. angle of rotation
- 3D rotations have 3 DoFs, several parametrizations exist such as Euler angles and quaternions

3D Rotation Representations – Matrix

Straight-forward: Orthonormal matrix

$$\mathbf{R} = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

Pro: Easy to concatenate and invert

$$\mathbf{R}_C^A = \mathbf{R}_B^A \mathbf{R}_C^B$$
 $\mathbf{R}_A^B = \left(\mathbf{R}_B^A\right)^{-1}$

 Con: Overparametrized (9 parameters for 3 DoF) - problematic for optimization

3D Rotation Representations – Euler Angles

• **Euler Angles**: 3 consecutive rotations around coordinate axes Example: roll-pitch-yaw angles α, β, γ (X-Y-Z):

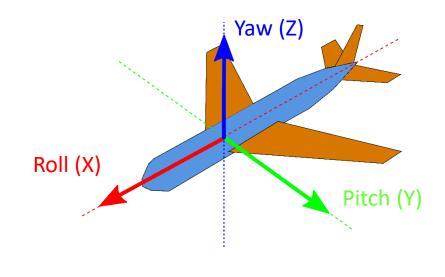
$$\mathbf{R}_{XYZ}(\alpha, \beta, \gamma) = \mathbf{R}_{Z}(\gamma) \, \mathbf{R}_{Y}(\beta) \, \mathbf{R}_{X}(\alpha)$$

with

$$\mathbf{R}_{X}(\alpha) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$

$$\mathbf{R}_{Y}(\beta) = \begin{pmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{pmatrix}$$

$$\mathbf{R}_{Z}(\gamma) = \begin{pmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Roll (X)

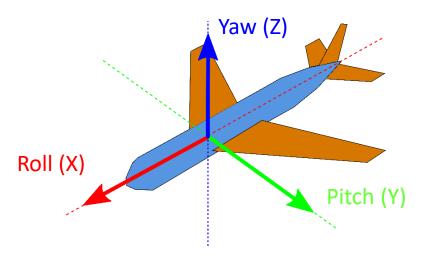


12 possible orderings of rotation axes (f.e. Z-X-Z)

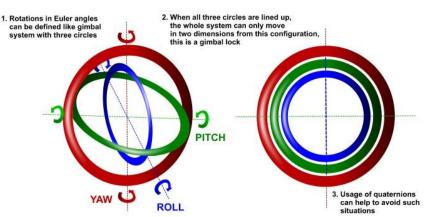
43

3D Rotation Representations – Euler Angles

Pro: Minimal with 3 parameters



- Con:
 - Singularities (gimbal lock)
 - concatenation/inversion
 via conversion from/to matrix



Loss in DoF

3D Rotation Representations – Axis-Angle

• Axis-Angle: Rotate along axis $\mathbf{n} \in \mathbb{R}^3$ by angle $\theta \in \mathbb{R}$:

$$\mathbf{R}(\mathbf{n}, \theta) = \mathbf{I} + \sin(\theta)\hat{\mathbf{n}} + (1 - \cos(\theta))\hat{\mathbf{n}}^2 \quad \|\mathbf{n}\|_2 = 1$$
where $\hat{\mathbf{x}} := \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$ $\hat{\mathbf{x}}\mathbf{y} = \mathbf{x} \times \mathbf{y}$

• Reverse:
$$\theta = \cos^{-1}\left(\frac{\operatorname{tr}(\mathbf{R}) - 1}{2}\right)$$
 $\mathbf{n} = \frac{1}{2\sin(\theta)}\begin{pmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{pmatrix}$

- 4 parameters: (\mathbf{n}, θ)
- 3 parameters: $\omega = \theta \mathbf{n}$

3D Rotation Representations – Axis-Angle

Pro: minimal representation for 3 parameters

- Con:
 - (\mathbf{n}, θ) has unit norm constraint on \mathbf{n} which can be problematic for optimization
 - both parametrizations not unique
 - concatenation/inversion via $\mathbf{SO}(3)$

3D Rotation Representations – Quaternion

- Unit Quaternions: $\mathbf{q} = (q_x, q_y, q_z, q_w)^{ op} \in \mathbb{R}^4$, $\|\mathbf{q}\|_2 = 1$
- Relation to axis-angle representation:
 - Axis-angle to quaternion:

$$\mathbf{q}(\mathbf{n}, \theta) = \begin{pmatrix} \mathbf{n}^{\mathsf{T}} \sin \left(\frac{\theta}{2}\right), \cos \left(\frac{\theta}{2}\right) \end{pmatrix}$$
$$\mathbf{n}(\mathbf{q}) = \begin{cases} (q_x, q_y, q_z)^{\mathsf{T}} / \sin(\theta/2), & \theta \neq 0 \\ \mathbf{0}, & \theta = 0 \end{cases}$$

• Quaternion to axis-angle: $\theta = 2 \arccos(q_w)$

3D Rotation Representations – Quaternion

- Pros:
 - Unique up to opposing sign $\, {f q} = {f q} \,$
 - Direct rotation of a point:

$$\mathbf{p}' = \mathbf{q}(\mathbf{R})\mathbf{p}\mathbf{q}(\mathbf{R})^{-1}$$

Direct concatenation of rotations:

$$\mathbf{q}(\mathbf{R}_2\mathbf{R}_1) = \mathbf{q}(\mathbf{R}_2)\mathbf{q}(\mathbf{R}_1)$$

Direct inversion of a rotation:

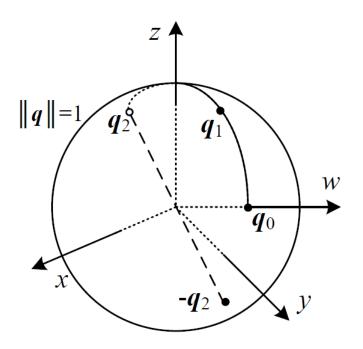
$$\mathbf{q}(\mathbf{R}^{-1}) = \mathbf{q}(\mathbf{R})^{-1}$$

with
$$\mathbf{q}^{-1}=(-\mathbf{q}_{xyz}^{ op},q_w)^{ op}$$
 , $\mathbf{p}=(\mathbf{p}_{xyz}^{ op},0)^{ op}$

$$\mathbf{q}_{1}\mathbf{q}_{2} = (q_{1,w}\mathbf{q}_{2,xyz} + q_{2,w}\mathbf{q}_{1,xyz} + \mathbf{q}_{1,xyz} \times \mathbf{q}_{2,xyz}, q_{1,w}q_{2,w} - \mathbf{q}_{1,xyz}\mathbf{q}_{2,xyz})$$

48

Con: Normalization constraint is problematic for optimization



Special Euclidean Group SE(3)

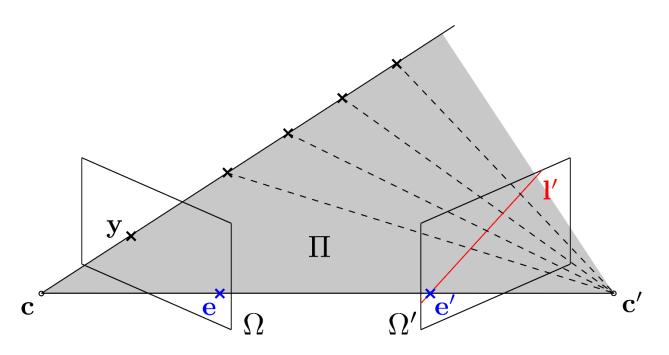
 Euclidean transformation matrices have a special structure as well:

$$\mathbf{T} = \begin{pmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{pmatrix} \in \mathbf{SE}(3) \subset \mathbb{R}^{4 \times 4}$$

- Translation t has 3 degrees of freedom
- Rotation $\mathbf{R} \in \mathbf{SO}(3)$ has 3 degrees of freedom
- They also form a group which we call $\mathbf{SE}(3)$. The group operator is matrix multiplication:

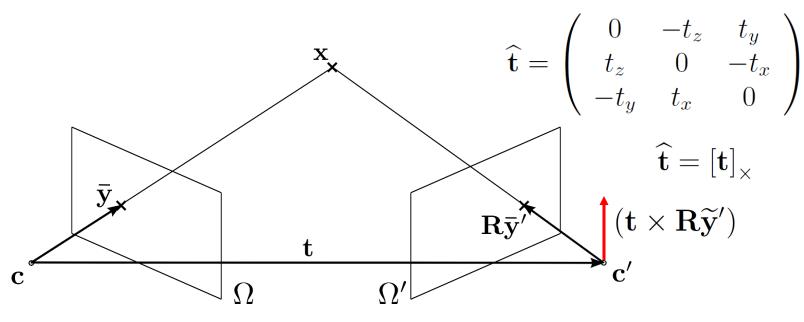
$$\cdot : \mathbf{SE}(3) \times \mathbf{SE}(3) \to \mathbf{SE}(3)$$
$$\mathbf{T}_B^A \cdot \mathbf{T}_C^B \mapsto \mathbf{T}_C^A$$

Epipolar Geometry



- Camera centers ${f c}$, ${f c}'$ and image point ${f y}\in\Omega$ span the epipolar plane Π
- The ray from camera center ${\bf c}$ through point ${\bf y}$ projects as the epipolar line ${\bf l}'$ in image plane Ω'
- The intersections of the line through the camera centers with the image planes are called epipoles e, e'

Essential Matrix



• The rays to the 3D point and the baseline $\, {f t} \,$ are coplanar

$$\widetilde{\mathbf{y}}^{\top} (\mathbf{t} \times \mathbf{R} \widetilde{\mathbf{y}}') = 0 \Leftrightarrow \widetilde{\mathbf{y}}^{\top} \widehat{\mathbf{t}} \mathbf{R} \widetilde{\mathbf{y}}' = 0$$

- ullet The essential matrix $\, {f E} := \widehat{f t} {f R} \,$ captures the relative camera pose
- Each point correspondence provides an "epipolar constraint"
- 5 correspondences suffice to determine ${f E}$ (simpler: 8-point algorithm)

Lessons Learned Today

- Image formation
 - Lenses focus light on image sensor
 - Approximation as pinhole camera
 - Camera settings determine focus, depth of field and field of view
 - Focus, depth of field, field of view
 - Digital cameras transfer irradiance to intensity
 - Lenses are imperfect: radial distortion and vignetting
- 3D rotation representations
- Recap of basic notions of multiple view geometry

Thanks for your attention!

Slides Information

- These slides have been initially created by Jörg Stückler as part of the lecture "Robotic 3D Vision" in winter term 2017/18 at Technical University of Munich.
- The slides have been revised by myself (Niclas Zeller) for the same lecture held in winter term 2020/21
- Acknowledgement of all people that contributed images or video material has been tried (please kindly inform me if such an acknowledgement is missing so it can be added).